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Abstract: In this paper, the buckling analysis of circular, solid and annular functionally graded thin plates 
under uniform radial compression loads is studied. The material properties through the thickness are assumed 
to be power functions of the thickness. Moreover, the stability equations based on the classical plate theory 
(CPT), are derived by using the Hamilton’s principle. The obtained coupled-PDEs are difficult to be used for 
evaluation of the buckling loads of annular plates with various boundary conditions. To resolve this difficulty, a 
coordinate transformation from the middle plane to a new position is done and as consequence the equations 
are decoupled. By using the forgoing equations, the buckling loads are determined. The procedure is done for 
both circular and annular FGM plates of various boundary conditions under uniform radial loads on the edges 
and the results are validated with one of references. 
  
Key Words: Buckling analysis; solid plate; annular plate; functionally graded materials. 
 
INTRODUCTION 
Functionally graded materials (FGMs) are a kind of 
composite materials which include continuously 
varying mechanical properties. Recently, these 
materials are widely used in manufacturing for 
special engineering applications such as nuclear 
reactors and chemical plants [1-2]. Also, these 
materials are been widely applied in the aerospace 
and airplane industries [3].  Vast applications of 
FGMs make it necessary to consider buckling 
capacity of these structures. This subject has 
attracted a lot of researches to study the mechanical 
and thermal buckling of FGMs. Buckling analysis of 
solid circular FGM plates is done by Najafizadeh and 
Eslami [4]. They derived the equilibrium and 
stability equations of a FGM circular plate under 
uniform radial compression loads. They considered 
the classical plate theory and solved coupled stability 
equations to obtain buckling loads. Other researchers 
[5-6] studied the thermal and mechanical buckling of 
rectangular FGM plates using the classical and high 
order plate theories. An exact solution for the 
buckling of FGM circular plates under uniform radial 
compression by using higher order shear deformation 
plate theory is presented by Najfizadeh and Heydari 
[7]. Also, Koohkan et al [8] analyzed annular 
functionally graded thin plates by using an analytical 
method. Abrate [9,10] studied the free vibration, 
buckling, and static deflections of FGM plates. He 
showed that FGM plates behave like homogeneous 
ones and their behavior can be predicted. In the 
present paper buckling loads of circular, solid and 
annular FGM plates under pressure loads are 
calculated. First, Stability equations are derived 

through the variational formulation then by using an 
elegant method without solving coupled equations, 
buckling loads are calculated. Annular plates with 
different boundary conditions are considered.  The 
results can also be used for FGM rings which are so 
applied as structural members in engineering designs. 
 
BRIEF REVIEW OF THE BASIC EQUATIONS 
FOR FGM CIRCULAR PLATES  
Power functions of the thickness circular plate 
composed of ceramic and metal is considered. The z 
component of coordinate axes is positioned along the 
plate thickness. Therefore, the modulus of elasticity 
E is considered as follows 
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where  cE   and  mE   are the Young’s modulus of 
the ceramic and metal, respectively. In Eq. (1), h 
presents the plate thickness while k shows the 
volume fraction exponent. However, the Poisson’s 
ratio is assumed to be constant. To obtain the total 
potential energy of the plate, strain energy is added 
to potential energy of external loads as follows 

Ω+= UV  (2) 
where  U  is the strain energy and can be obtained as 
follows: 
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where ijε  and ijσ  are the strain and stress 
components, respectively. By considering a plane-
stress condition the two dimensional stress–strain 
law can be expressed as bellow: 
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Applying Love–Kirchhoff assumptions zrε  and θε z  
(out of plane shear deformations) are disregarded 
because the plate is assumed thin. The strain 
components with the distance z from the middle 
plane are given by: 

rrrrrr zk+= εε  (7) 
θθθθθθ εε zk+=  (8) 

θθθ εε rrr zk2+=  (9) 
where ijε  and ijk  are the engineering strain 
components and the curvatures, respectively which 
can be obtained by 
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where u, v and w represent the corresponding 
components of the displacement of a point on the 
mid-plate surface. In Eq. (2), Ω , the potential energy 
of external loads is given by 
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where pr is the r component of the external load over 
surface of the plate element. By substitution Eqs. (4-

9) into Eq. (3), integrating with respect to z from 
2
h

−  

to 
2
h , and adding Eq. (16), the total potential energy 

is obtained as follows: 
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Eq. (1) is considered to define the forgoing 
parameters as follows: 
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By assuming that the plate is subjected to the 
uniform compression load alone, the total potential 
energy is a function of the displacement components 
and their derivatives and might be written as bellow: 
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STABILITY EQUATIONS 
Generally, to derive the stability equations by using 
energy method, the condition of second variation of 
the total potential energy is used, Brush and Almorth 
[11]. To determine the second variation condition, 
the following rule, namely Trefftz rule ( 0)( 2 =Vδδ ), 
is considered. This rule provides the governing 
equations that determine the buckling load. To 
achieve this goal the displacement components are 
defined as follows: 

10 uuu +=  (26) 

10 vvv +=  (27) 

10 www +=  (28) 

where, 0u , 0v , 0w   present the primary state of 
equilibrium and 1u , 1v , 1w  show arbitrary small 
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increments of displacements. Eqs. (10-12,13-15) are 
substituted into Eq. (18), in order to obtain the total 
potential energy in terms of displacement 
components. Treffts rule is applied and the second 
order terms are collected to obtain following 
equation. 
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The Euler equations are applied to the variation in 
order to derive the stability equations as follows: 
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An axisymmetric buckling of a circular plate 
subjected to the uniform compressive load −P along 
its edge is considered. Therefore, 0=== zPPθθβ  
and with this condition, the stability equations are 
rewritten as follows 
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where Nr0 and Nθ0 are the pre-buckling forces which 
are equaled to P− while pre-buckling rotations are 
neglected. The equations (39), (40) are two coupled 
ordinary differential equations. Considering these 
equations, buckling loads for plates with different 
boundary conditions cannot be obtained easily. 
Herein, a new coordinate system is assumed which is 
at the distance δ  from the previous one [10, 11]. 

δ+= zz  (41) 

where δ  is the vertical distance between the 
forgoing coordinate systems and the new one. The 
new coordinate is applied and it can be written as 
follows: 
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Now, it is considered AB /=δ  in order to achieve 
0=B . As the vertical displacement in the new 

coordinate is the same with the previous one, 
equations (39) and (40) in the new coordinate can be 
converted to: 
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Eq. (43) can be rewritten in the following form: 
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where 
22 1// νμ −= CPr  (46) 

The 4th order Bessel equation is solved to obtain: 
),()()ln()( 040321 rYCrJCrCCrw μμ +++=  (47) 

where )4,...,1( =iCi  are constants of integration while  

0J   and  0Y  are the Bessel functions of the first and 
second kind of zero orders, respectively. 
 

DEFINING THE PROBLEM DOMAIN AND 
BOUNDARY CONDITIONS 
The problems contain circular, solid and annular thin 
plates under compression loads. The circular solid 
plate is considered to be compressed on the edge. It 
is assumed that the plate has either the clamped or 
simply supported boundary conditions. Also the 
annular plate is assumed to be compressed on the 
both inner and outer edges.  The buckling load is 
calculated for either clamed or simply supported 
boundary conditions. 
 
Solid circular plate with clamped boundary 
condition 
A circular plate with radius R and clamped boundary 
condition under pressure load is considered, see Fig. 
1.  
 

 

Fig. 1. Solid circle plate under pressure load 

 
Since )(rw  must be finite for all values of r , the two 
terms )ln(r  and )(0 rY μ  are dropped for the solid 
plate because they approach an infinity when 0→r . 
Thus, for the circular plate, Eq. (47) is rewritten as 
follows 

)()( 031 rJCCrw μ+=  (48) 
The edge boundary condition for this plate is given 
by 

RrRr dr
rdwrw == == 0)(,0)(  (49) 

P 
R
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The forgoing boundary conditions are substituted 
into Eq. (48) to obtain the following system of linear 
homogeneous equations  

,0)(031 =+ rJCC μ  
0)(13 =− rJC μμ  (50) 

A nontrivial solution of these equations is found as 
follows  

22
2

, 68.14)8317.3(
R
D

R
DP crr ==  (51) 

where 

)1/()/(
1

22
2

ν
ν

−−=
−

= ABCCD  (52) 

It should be noted that tables of the Bessel functions 
[12] are used to find the solution. 
 
Solid circular plate with simply supported 
boundary condition 
A circular plate with radius R  and simply supported 
boundary condition under pressure load is 
considered. The Poisson’s ratio is assumed to be 3.0  
and the edge boundary conditions are considered as 
follows: 

Rr
rM

Rr
rw r =

=
=

= 0)(,0)(  (53) 

where 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

dr
dw

rdr
wdCM r

ν
2

2
 (54) 

Substituting the Eq. (48) into the boundary 
conditions (53) we arrive at the following system of 
linear homogeneous equations 

0)(031 =+ RJCC μ  (55) 

0)]()1()([ 103
2 =−−− RJRRJCC μνμμμ  (56) 

A nontrivial solution of this system of equations 
leads to the following 

0)()1()( 10 =−− RJRJr μνμμ  (57) 
Letting 3.0=ν  and using the tables of the Bessel 
function, we can determine the smallest nonzero root 
of Eq. (57) as 

0458.2)( min =Rμ  (58) 
where the buckling load can be obtained as follows 

2, 196.4
R
DP crr =  (59) 

  
Annular plate with inner and outer edges clamped  
An annular plate with inner radius aRi = and outer 
radius bRo = under pressure loads on the both edges 
is considered, see Fig. 2. Eq. (47) is applied while 
considering the following boundary conditions 

brbrarar dr
rdw

rw
dr

rdw
rw ==== ==== 0

)(
,0)(,0

)(
,0)(  (60) 

The answer is yielded to the following system of 
linear homogeneous equations 

barrYCrJCrCC ,,0)()()ln( 040321 ==+++ μμ  (61) 
 

barrYCrJCrC ,,0)()(/ 14132 ==+− μμμμ  (62) 

 
 

 

Fig. 2. Annular plate with compressive load on the 
both inner and outer edges 

 A nontrivial solution of this system of equations is 
led to 

)det(,0

)(
)(

)(
)(

/1
)ln(

0
1

)(
)(

)(
)(

/1
)ln(

0
1

1

0

1

0
1

0

1

0

xx

bY
bY

bJ
bJ

b
b

aY
aY

aJ
aJ

a
a

==

−−

−−

μμ
μ

μμ
μ

μμ
μ

μμ
μ

 (63) 

To solve Eq. (63) for determined a  and b  we can 
use the tables of the Bessel function, it would 
determine the smallest μ  which leads to the smallest 
buckling load with respect to 2

, μDP crr = . 
However, it takes time to use the tables of the Bessel 
function. To solve this problem, Figure (3) is 
prepared to calculate the buckling load. This figure is 
plotted using the Bessel function tables. Considering 
this figure and the following equation the buckling 
load is calculated more easily. 

2

2

,
a

DP crr
μ′

=  (64) 
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Figure 3: a/μμ =′ vs. b/a for an annular plate with 
inner and outer edges clamped 

 
Annular plate with inner edge simply supported 
and outer edge clamped  
An annular plate with inner edge simply supported 
and outer edge clamped is considered.  The stability 

P
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equation is solved for this kind of annular plate while 
the corresponding boundary conditions are 
considered. Like the previous part to prevent 
burdensome procedure of using the Bessel function 
tables; Figure (4) is prepared. Considering this figure 
and Eq. (64) the buckling load is calculated. 

b/a

μ′
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0
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5

6

7

8

9

10

11

12

 
Figure 4: μ′vs.b/a for an annular plate with inner 
edge simply-supported and outer edge clamped 

 
Annular plate with inner edge clamped and outer 
edge simply supported or with inner and outer 
edges simply supported  
The buckling loads for these plates are calculated 
using Eq. (64) and Figures (5, 6) respectively. 
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Figure 5: μ′ vs. b/a for an Annular plate with inner 

edge clamped and outer edge simply supported 
 
NUMERICAL RESULTS AND DISCUSSION 
As it was discussed, the buckling load for the FGM 
circular solid and annular plate is obtained without 
solving coupled stability equations. For the solid 
circular plate the closed form is obtained while for 
the annular plates the Bessel function tables are 
applied to obtain the buckling loads. Considering the 
closed form solution obtained for the solid circular 
plate, figures (7, 8) are plotted. The figures show the 
buckling load versus thickness on radius (h/a) of a 

circular FGM plate under uniform radial 
compression with clamped and simply supported 
boundary conditions, respectively. The combination 
of materials consists of aluminum ( GPaEm 70 , 

3.0=mν ) and alumina  ( GPaEc 380 , 3.0=cν ). 
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Figure 6: μ′ vs. b/a for an Annular plate with inner 

and outer edges simply supported 
It can be seen that the buckling load increases with 
an increase of (h/a) and decreases with an increase of 
the volume fraction ratio.  
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Figure 7: Buckling load vs. thickness on radius of the 

clamped plate with various volume fraction 
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Figure 8: Buckling load vs. thickness on radius of 
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simply-supported plate; various volume fraction 
Evaluating the results obtained for the annular plates, 
Table 1 is prepared. Homogenous annular plates with 
different outer to inner radiuses are considered and 
the results are compared with Yamaki [13]. To obtain 
the buckling load of a C-C annular plate, Fig. (3) is 
considered and the result is compared with the 
reference while a good agreement is seen. The 
procedure is continued and the buckling load for a S-
C annular plate is calculated (using Figure 4) which 
is normally less than the buckling load of the C-C 
annular plate with the same geometry. In the same 
procedure buckling loads for plates with C-S and S-S 
boundary conditions are calculated (using Figures 5 
and 6, respectively) and compared with the reference. 
It can be seen that the results of Table 1 are a good 
verification of the presented approach. Table 2 is also 
prepared in the same procedure while considering the 
FGM annular plate. Different aspect ratios and 
volume fraction ratios are considered to show the 
effect of the variation of the material properties on 
the buckling load. It should be noted that FGMs 
composed of aluminum and alumina with the 
forgoing properties used for plotting Figures 7, 8 are 
considered. It can be seen that buckling load 
decreases by increasing the volume fraction ratio. 
 

Table 1: Buckling load for an annular plate;  
D=1 (C stands for clamp and S for simply support) 

Pcr C-C S-C 

b/a present 
[Yamaki] 

 (1958) 
present [Yamaki] 

2 37.06 36.90 22.09 22.18 

10 0.50 0.45 0.39 0.36 

 

 C-S S-S 

 present [Yamaki] present [Yamaki] 

 19.00 19.05 10.24 10.24 

 0.22 0.22 0.18 0.18 

 
CONCLUSION 
Circular, solid or annular plates are widely applied in 
engineering structures. In the present study, stability 
equations for FGM circular plates under uniform 
radial compression loads with the assumption of 
power law composition for the constituent materials 
are derived. Also, an analytical solution for the 
problem is obtained. Moreover, an elegant method is 
introduced without solving coupled equations arising 
buckling loads of the circular and annular FGM 
plates. The results are in very good agreement with 
those obtained by other references. This study can be 

used as an accurate reference for many problems in 
functionally graded materials also for FGM rings 
which are applied as structural members in 
engineering designs. 
 

Table 2: Buckling load for an annular FGM plate 
with different volume fraction (h/a=0.01) 

Pcr/10^5 C-C S-C 

b/a K=0.5 K=2 K=0.5 K=2 

2 8.360 5.016 4.983 3.990 

10 0.112 0.068 0.088 0.053 

 

 C-S S-S 

 K=0.5 K=2 K=0.5 K=2 

 4.286 2.572 2.310 1.386 

 0.050 0.028 0.041 0.024 
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