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Abstract: A numerical study of natural convection in a tilted square cavity with heated horizontal base and cold upper wall 
is presented. The present study is based in such a configuration where the top triangular wall of two different shapes is 
maintained at a constant low temperature. A constant heat flux source whose length is 20% of the total length of the cavity is 
discretely embedded at the left corner of the bottom wall. The remaining part of the bottom wall and the two sidewalls are 
considered to be adiabatic. The study includes computations for inclination angles of the cavity from 0o to 45o, where the 
Grashof number, Gr varies from 103 to 106. The Penalty finite element method has been used to see the effects of inclination 
angles and Grashof number on heat transfer process in the cavity. Results are presented in the form of streamline and 
isotherm plots as well as the variation of the average Nusselt number. Observation shows the significant effect of different 
triangular top surface on the heat transfer characteristics at the higher Grashof number and inclination angle. 
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INTRODUCTION 

Natural convection heat transfer and fluid flow in 
enclosed space or closed cavities is under considerable 
attention of engineers because of its great importance in 
several thermal engineering problems. There are a variety 
of real-world applications of natural convection, such as, 
thermal insulation, cooling of electronic equipment, solar 
energy devices, nuclear reactors, heat-recovery systems, 
room ventilation, crystal growth in liquids etc. The fluid 
flow and heat transfer behavior of such systems can be 
predicted by the mass, momentum and energy conservation 
equations with appropriate boundary conditions. Most of 
the related studies are focused on differentially heated 
rectangular or square enclosure. However, the shape of 
enclosure can be in different configurations such as, in 
most of the related engineering situations which include 
triangle, parallelogram or trapezoidal and heater can be 
located on the bottom wall. The need for information on 
the thermal behavior of natural convective flow in channels 
and cavities has been recognized by the building design 
community. For example, in the case of passive solar 
heating and natural ventilation systems as documented by 
several studies. The main advantage of natural convection 
is its intrinsic reliability, because the air movement is 
simply generated by local density gradients in the presence 
of the gravitational field. The thermal design of a naturally 
ventilated device depends on geometric and operating 
conditions, shape and dimensions of the system, flow areas 
of the inlet/outlet openings, location of the heat sources, 
and amount of thermal power dissipated, chimney height, 
and so on. A great deal of these works dealing with flow 
and associated heat transfer in enclosures is reported in the 
literatures1-4. 

Natural convection in a closed square cavity has taken 
the center stage in many fundamental heat transfer analysis 
which is of prime importance in certain technological 

 
Nomenclature 

g Gravitational acceleration 
Gr Grashof number 
J Jacobian 
L Length of the heat source 
Ni Standard shape functions 
Nu Nusselt number 
p Pressure 
P Dimensionless pressure 
Pr Prandtl number 
q Heat flux 
Ri Residual equations 
T Temperature 
Tc Temperature of the cold surface 
u Velocity component in x-direction 
U Dimensionless velocity component in X-direction
v Velocity component in y-direction 
V Dimensionless velocity component in Y-direction
W Width of the cavity 

x, y Cartesian co-ordinates 
X, Y Dimensionless Cartesian co-ordinates 
Greek Symbols 

k Thermal conductivity of fluid 
α Thermal diffusivity 
β Coefficient of volumetric expansion 
θ Dimensionless temperature 
ρ Fluid density 
ν Kinematic viscosity 
Ψ Dependent variable 
Φ Inclination angle 
γ Penalty parameter 
θs Local dimensionless temperature 
∆T Temperature difference 
Ω Element area 

Subscript 
c Cold wall 
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Shape 1 Shape 2 

Figure 1: Physical models of the problem. 

applications. Ali and Husain5 investigated the natural 
convection heat transfer and flow characteristics in a 
square duct of vee corrugated vertical walls. Ali and 
Husain6 also investigated the effect of corrugation 
frequencies on natural convective heat transfer and flow 
characteristics in a square enclosure of vee corrugated 
vertical walls. This investigation showed that the overall 
heat transfer through the enclosure increased with the 
increase of corrugation for low Grashof number; but the 
trend was reversed for high Grashof number. An enclosure 
with corrugated bottom surface maintaining a uniform heat 
flux and flat isothermal cooled top surface and adiabatic 
side walls was studied by Noorshahi et al.7. The results 
showed that the pseudo-conduction region was increased 
with the increase of the wave amplitude. Yao8 studied 
theoretically the natural convection along a vertical wavy 
surface. Adjlout et al.9 reported a numerical study of the 
effect of a hot wavy wall in an inclined differentially 
heated square cavity. Tests were performed for different 
inclination angles, amplitudes and Rayleigh numbers for 
one and three undulation. It may also be noted that the 
sinusoidal wall temperature variation produces uniform 
melting of materials such as, glass as recently reported by 
Sarris et al.10. In their detailed study, they described the 
effect of sinusoidal top wall temperature variations in a 
natural convection within a square enclosure where the 
other walls were insulated. Whereas, enclosures had been 
investigated to lesser extend11,12. Natural convection in 
triangular cavities had been studied in porous media by 
several researches13,14. A numerical study was carried out 
for the two- dimensional laminar natural convection in a 
pitch roof of triangular cross-section under summer day 
boundary condition15. In that work, the effects of height-
base ratio and Rayleigh number on the flow structure and 
heat transfer were investigated. It was found that a 
considerable proportion of the heat transfer across the base 
wall of the region takes place near the intersection of the 
cold horizontal wall and hot inclined wall. 

The present paper reports the numerical study of 
natural convection in a tilted square cavity (W × W) with 

triangular top wall where air has been taken as the working 
fluid. The physical model considered here are shown in 
Figure 1 (shape 1 and shape 2), along with the important 
geometric parameters. In this investigation, the top 
triangular wall is maintained at a constant low temperature 
Tc, a constant heat flux source, q of length L = 0.2W is 
discretely embedded at the left corner of the bottom wall, 
and the remaining non-heated parts of the bottom surface 
and the two vertical sidewalls are considered to be 
adiabatic. Two different shapes are considered where shape 
1 and shape 2 have one and two triangular tops 
respectively with the same amplitude fixed at 10% of the 
cavity length. In the present study, numerical simulations 
are carried out for different inclination angles with Gr = 
103 to 106 and a fixed Prandtl number, Pr of 0.71. 
 
GOVERNING EQUATIONS 

Consider a steady two-dimensional laminar flow of 
incompressible fluid, with negligible viscous dissipation 
effect. For the treatment of the bouncy term in the 
momentum equation, Boussinesq approximation is adopted 
to account for the variations of temperature as a function of 
density, and to couple in this way the temperature field to 
the flow field. Then the governing equations for steady 
natural convection flow using conservation of mass, 
momentum and energy can be expressed in the 
dimensionless form as: 

U V 0
X Y
∂ ∂

+ =
∂ ∂

                  (1) 

2 2
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where, U and V are the velocity components in the X and 
Y directions, respectively, θ is the temperature, P is the 
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pressure and Φ is the inclination angle of the enclosure. 
The Grashof number and the Prandtl number are defined 
as: 

3g T WGr
2

β∆
=

ν
and Pr υ

=
α

        (5) 

The dimensionless parameters in the equations above are 
defined as follow: 

x y uW vWX ,Y , U ,V ,
W W

2 T TpW qWcP , and T
2 T k

= = = =
υ υ

−
= θ = ∆ =

∆ρυ

      (6) 

where, ρ, β, υ, α and g are the fluid density, coefficient of 
volumetric expansion, kinematic viscosity, thermal 
diffusivity, and gravitational acceleration respectively. The 
corresponding boundary conditions for the above problem 

are given by: 
 
For all walls: ,  U V 0= =
At top wall: ,  0θ =

In Right and left side walls: 0
Y
∂θ

=
∂

 

For bottom wall: 0 for 0.2 X 1
1 for 0 X 0.2Y

< <∂θ
= − ≤ ≤∂ 

 

(7)

 
The average Nusselt number can be written as, 

( )
0.2

S0

1 1Nu dX
0.2 X

=
θ∫                 (8) 

where, θS(X) is the local dimensionless temperature of the 
heated surface. The Simpson’s rule is used for numerical 
integration to obtain the average Nusselt number. 
 
FINITE ELEMENT FORMULATION 

The continuity equation (1) can be used as a constraint 
due to mass conservation and this constraint may be used 
to obtain the pressure distribution. In order to solve Eqs. 
(2) to (4), the Penalty finite element method16 has been 
used where the pressure P is eliminated by a penalty 
parameter γ and the incompressibility criteria is given by 
Eq. (1) which results in: 

U VP
X Y
∂ ∂

= −γ + ∂ ∂ 


                  (9) 

The continuity Eq. (1) is automatically satisfied for large 
values of γ. Using Eq. (9), the momentum Eqs. (2) and (3) 
reduces to 

( )

2 2U V U V U UU V Pr
2 2X Y X X Y X Y

Ra Pr sin

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + = γ + + +  ∂ ∂ ∂ ∂ ∂  ∂ ∂





+ Φ θ

  (10) 

( )

2 2V V U V V VU V Pr 2 2X Y Y X Y X Y

Ra Pr cos

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + = γ + + +  ∂ ∂ ∂ ∂ ∂  ∂ ∂





+ Φ θ

  (11) 

Expanding the velocity components (U, V) and 

temperature (θ) using basis set as { }NNk k 1=
N N N

U U N , V V N ,and Nk k k k k k
k 1 k 1 k 1

≈ ≈ θ ≈
= = =
∑ ∑ ∑ θ  

)

 (12) 

Then the Galerkin finite element method yields the 
following nonlinear residual equations for Eqs. (10), (11), 
and (12) respectively at nodes of internal domain A. 

 

( )

( )
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( ) N N N N3 N N N N N Nk k i k i kR U N V N dXdYk k k k k ki X Y X X Y Yk 1 k 1 k 1 k 1
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∑ ∑ ∑ ∑∫ ∫ dXdY

       (15) 

 Three point Gaussian quadrature formula is used to 
evaluate the integrals in the residual equations. The non-
linear residual Eqs. (13) to (15) are solved using Newton’s 
method to determine the coefficients of the expansions in 
Eq. (12). Also 

(X X N ,
6

k k
k 1

= ξ η

=
∑  and (Y Y N ,

6
k k

k 1
)= ξ η

=
∑            (16) 

where, Ni (ξ, η) are the local six noded triangular basis 
functions on the ξ – η domain. The integrals in Eqs. (13) to 
(15) can be evaluated in ξ - η domain using following 
relationships: 

NY YN
1X

N X XJ
Y

ii

i i

∂∂ ∂

N

  ∂  −     ∂η ∂ξ ∂ξ∂     =
  ∂ ∂ ∂ ∂  −     ∂η ∂ξ∂ ∂η     

 and dX dY = J dξ dη (17) 

( )
( )

X X
X, Y

J
Y Y,

∂ ∂
∂ ∂ξ ∂η

= =
∂ ∂∂ ξ η
∂ξ ∂η

                                                  (18) 

 
NUMERICAL PROCEDURE 

The numerical procedure used to solve the governing 
equations for the present work is the Penalty finite element 
method. The application of this technique is well 
documented by Zienkiewicz and Taylor17. It provides the 
smooth solutions at the interior domain including the 
corner regions. The non-linear parametric solution method 
is chosen to solve the finite element equations. This  
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Figure 2: Grid refinement test. 
 

approach will result in substantially fast convergence 
assurance. A non-uniform triangular mesh arrangement is 
implemented in the present investigation especially near 
the heated surface to capture the rapid changes in the 
dependent variables. Also six noded triangular elements 
are used in this paper since the six noded elements 
smoothly capture the non-linear variations of the field 
variables. All six nodes are associated with velocities as 
well as temperature, only the corner nodes are associated 
with pressure. Solutions are assumed to converge when the 
following convergence criteria is satisfied for every 
dependent variables at every point in the solution domain 

10 6new old
old

Ψ −Ψ
≤

Ψ
−                                                    (19)   

Figure 4 shows the variation of streamlines and 
isotherm plots for one triangular top square cavity with Gr 
= 104. It is shown from the figure that the velocity profiles 
of the enclosure are denser near the side walls and a core is 
observed at the center position of the enclosure. This is due 
to the geometry of top wall. In presence of the lower 
magnitude of Grashof number, the formation of 
circulating cell at Φ = 0° is almost symmetry about 
the center line of enclosure. At Φ = 15°, that is, 
increasing the inclination angle the  circulating cell 
slightly inclined from left to right and the core seems 
to move downward. But at  Φ = 30°, the cell comes 
into the symmetry position again and the presence of 
core seems at the center region of the enclosure. At Φ 
= 45°, the streamline plots exhibits the same nature. 
At higher Grashof number, when the intensity of 
convection increases significantly, the core of the  

where, Ψ represents a dependent variable U, V, P, and θ. 
 
GRID REFINEMENT CHECK 

The grid-independent test has been performed at       
Pr = 0.71 and Gr = 103 for the configuration of a single 
triangular top as reported in Figure 2. Extensive numerical 
tests are performed and it is found that 4606 mesh elements 
provides satisfactory results for the test geometry and the 
solution obtained is to be independent of the grid size. In 
order to validate the numerical model, the results are 
compared with those reported by Sharif and Mohammad18, 
for square straight enclosure with Gr = 106 and L/W = 0.4 
as shown in Figure 3. The agreement is found to be 
excellent which validates the present computations 
indirectly. 
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RESULTS AND DISCUSSION 
A parametric study is carried out to examine the 

effect of inclination angles of the two different 
triangular top enclosures for Grashof number, Gr = 
103, 104, 105 and 106. In this investigation, working 
fluid is chosen as air with the Prandtl number, Pr = 
0.71. 

The main characteristics of the flow and the 
energy transport for two different triangular top 
square cavity are shown in the Figures 4, 5, 6 and 7 in 
terms of streamlines and isotherms respectively for 
various Gr = 103 and 106. Since the heated part of the 
bottom wall is at a higher temperature than the top wall, 
the density of fluid near the left corner of the bottom wall 
decreases compared to the density of the fluid adjacent to 
the top wall. As a result, the flow rises along the left 
vertical wall and gets blocked at the top cold wall, 
which turns the flow horizontally towards the 
adiabatic right wall. The flow then descends 
downwards and turns back horizontally to the left 
heated region after hitting the bottom wall. Thus the 
flowing fluid forms clockwise rotations inside the cavity 
as seen from those figures. It is observed that for Grashof 
number, Gr ≤ 104, the convection effect is very less 
between the walls. With the increase of Gr, the buoyancy 
force increases, resulting in a strong circulation of the fluid 
inside the cavity and thus indicating convective heat 
transport. 

 
 

 

 
Sharif and Mohammad18 Present Work 

Figure 3: Comparison of the Isotherm plots of the square straight enclosure with Sharif and Mohammad18  

at Gr = 106 and L/W = 0.4 
 

Journal of Mechanical Engineering, Vol. ME39, No. 1, June 2008 
Transaction of the Mech. Eng. Div., The Institution of Engineers, Bangladesh 



Natural Convection in Tilted Square Cavities with Triangular Shaped Top Cold Wall 34

circulating rolls moves up. It is observed that in the 
presence of the higher magnitude of Grashof number, 
Gr = 106, as the inclination angle increases, the 

circulating cell slanting from right to left. This 
phenomenon is shown in Figure 5. 
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Figure 4: Variation of streamline and Isotherm plots for shape 1 with Gr = 104 
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The nature of isotherm plot for Grashof number, 
Gr = 104 and 106 are shown in Figures 4 and 5 
respectively. It is found that for different inclination 
angles the temperature decreases uniformly from the 
heated part of the bottom wall to the top wall. The 

temperature contours are highly dense near the bottom wall 
and concentrates towards the hot surface indicating 
the presence of large temperature gradient there. At 
higher Grashof number, Gr = 106, the isotherm 
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Figure 5: Variation of streamline and Isotherm plots for shape 1 with Gr = 106 
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patterns changes significantly indicating that the 
advection is the dominating heat transfer mechanism 
in the enclosure. It is observed that as the inclination 
angle increases, some of the temperature contours 

occur near the top wall and a non-uniform oval shape 
profiles are visualized at the center region which cover the 
full region of the enclosure. 
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Figure 6: Variation of streamline and Isotherm plots for shape 2 with Gr = 104 
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 Streamlines Isotherms 
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Figure 7: Variation of streamline and Isotherm plots for shape 2 with Gr = 106 
 

The variation of streamline and isotherm plots for two 
triangular top shaped square cavities are shown in Figures 
6 and 7 for lower and higher magnitude of Grashof 
number. The visual examination of stream lines are 

almost same. For large Grashof number, Gr = 106, there 
exists a small vortex near the left corner of the 
triangular top at inclination angle Φ = 15°. As the 
inclination angle increases, the isotherms plots 
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become denser near the hotter region and some oval 
shape profiles cover the full region of the enclosure. 
This phenomenon is visualized in Figure 7. 

The variation of the average Nusselt number with 
Grashof number, Gr, are investigated for the different 
inclination angles, Φ, which are shown in Figure 8(a, 
b). In general, the Nusselt number increases with the 
increase of Grashof number. It is observed that for 
lower Grashof number (Gr ≤ 104), the average Nusselt 
number increases slightly with increasing value of Gr 
for both shape 1 and shape 2 for different inclination 
angle, Φ. This phenomenon indicates the fact that 
buoyancy effect does not dominate the heat transport 
mechanism for small value of Gr. As the Grashof 
number increases, the heat transfer rate increases 
more rapidly comparing to the shape 2. It is also 
found that the maximum heat transfer occurs only for 
shape 1 when the inclination angle is Φ = 0°. The 
reason behind this phenomenon is that with the 
increase of isothermal surface at the top wall, heat 
transfer rate grows up for single triangular top at 
higher Gr. Moreover, for double triangular tops, the 
development of local eddies on each top corner of the 
triangles reduce the heat transfer process though 
further increase of heat transfer surfaces. 

 

 
(a) Shape 1 

 

 
(b) Shape 2 

 

Figure 8: Average Nusselt number variation with Gr for 
different inclination angles, Φ 

 
 

CONCLUSION 
In this investigation, natural convective of a localized 

constant heat flux embedded at the left side of the bottom 
wall of a tilted square cavity where the sidewalls are 
adiabatic and the modified top wall is isothermal have been 
investigated and analyzed numerically using the 
penalty finite element method for Gr = 103 to 106 and 
Pr = 0.71. The above analysis shows the effect of 
inclination angle for different Grashof number for 
natural convection inside a different triangular top 
square cavity. The brief summery of the results can 
be mentioned below: 

i) The flow rises along the left vertical wall and 
gets blocked at the top cold wall, which turns the flow 
horizontally towards the adiabatic right wall. The 
flow then descends downwards and turns back 
horizontally to the left heated region after hitting the 
bottom wall. Thus the flowing fluid forms clockwise 
rotations inside the cavity. 

ii) Comparing the results of the different shapes 
with lower Grashof number, the maximum Nusselt 
number obtained for Φ = 0° which is significantly 
different from other inclination angle. 

iii) For Gr ≤ 104, there is a very little change in 
Nusselt number for all inclination angles for different 
shapes. 

iv) The maximum heat transfer occurs only for 
shape 1 when the inclination angle is Φ = 0°.  
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