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Abstract: Long memory processes where positive correlations between observations far apart in time and space decay very 
slowly to zero with increasing time lag, occur quite frequently in fields such as hydrology and economics. Stochastic 
processes that are invariant in distribution under judicious scaling of time and space, called self-similar process, can 
parsimoniously model the long-run properties of phenomena exhibiting long-range dependence. Four of the heuristic 
estimation approaches have been presented in this study so that the self-similarity parameter, H that gives the correlation 
structure in long memory processes, can be effectively estimated. Finally, the methods presented in this paper were applied 
to two observed time series, namely Nile River Data set and the VBR (Variable- Bit-Rate) data set. The estimated values of H 
for two data sets found from different methods suggest that all methods are not equally good for estimation.  
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INTRODUCTION 

The analysis of experimental data that have been 
observed at different time points leads to new and unique 
problems in mathematical/statistical modeling and 
inference. The obvious correlations introduced by the 
sampling of adjacent time points can severely restrict the 
applicability of the many conventional statistical methods 
those traditionally depend on the assumption that the 
adjacent observations are independent and identically 
distributed. The accuracy in forecasting depends on 
actively detecting the underlying trend in a time series data. 
Numerous efforts have been made in this regard, the 
analysis of the behavior of Nile river and several similar 
time series led to the discovery of Hurst effect1,3. 
Motivated by Hurst’s empirical findings, Mandelbrot 
and co-researchers4-6 later introduced fractional 
Gaussian noise as a statistical model with long-range 
dependence. The works of J. Beran7 on statistics for long 
memory processes is considered a pioneering one in this 
arena. Estimating the self-similarity parameter by different 
methods applying in two data sets namely, Nile river data 
set and the VBR data set is the main goal of this paper. 
Autocorrelation is a useful tool for finding repeating 
patterns not only in statistics but also in a signal, such as 
determining the presence of a periodic signal which has 
been buried under noise. The autocorrelation function 
(ACF) of a random process describes the correlation 
between the processes at different points in time. Let Xt be 
the value of the process at time t (where t may be an 
integer for a discrete-time process or a real number for a 
continuous-time process). If Xt has mean µ and variance σ2 
then ACF can be defined as 

( ) ( )( ) 2
i i kr k E X Xµ µ σ+= − −⎡ ⎤⎣ ⎦   

where E is the expected value operator, k is the lag, |t − s|. 
Brief descriptions of each data set along with the relevant 
figures are included here to get a preliminary idea about 
the behavior of the data.  

Nile River data set: This data set is based on the 
minimal water level of the Nile river for the years (622 
AD-1284 AD) measured at Roda Gause near Cairo, Egypt7. 
An ACF (Auto-Correlation Function)8 plot of Nile data set 
is shown in Fig.1 where it is evident that there is a long 
period when the minimum water level tends to be high and 

another long period where water level seems to be 
relatively low but the whole series looks to be stationary. 
ACF plots show that autocorrelation decreases towards 
zero at a very slower rate which may be considered as a 
hint of long-range dependence structure. 

VBR data set: The VBR (Variable-Bit-Rate) data set 
is based on video traffic measurements over asynchronous 
transfer mode (ATM). Data set contains the amount of 
coded information per frame for a certain video scene. The 
scene consists of a conversation among three people sitting 
around a table. This data set is a part of a longer series, 
which contains only 1000 coded information per frame 
based on about 30 minutes of video film. About 25 frames 
per second are processed. The data set was generated by 
engineers at Siemens, Munich using VBR codec that was 
especially designed for high-speed networks3.  Time series 
of VBR in Fig. 2 indicates that there are some local periods 
with a large number of ATM cells and in some periods 
with a small number of cells. The ACF plot indicates that 
there may be long-lasting strong dependence and the 
dependence structure seems to be more complicated than 
that for the Nile river data set. 

 
FORMULATION OF THE METHODS 

Long-range dependence had been known long before 
suitable stochastic models were developed. It was observed 
empirically in many cases that correlation between 
observations which are far apart in time or space decay to 
zero at a slower rate than expected from independent 
observations. 
The Hurst Phenomenon 

Hurst Phenomenon was brought to light through the 
calculation procedure of the capacity of a fictitious 
reservoir that would have been ‘perfect’ for the time span 
between j and j + k (j, k ∈ N, the set of positive integers). 
To avoid any complexity, it was assumed that time is 
discrete and that there are no storage losses owing to 
evaporation, leakage etc. ‘Perfect capacity’ means that the 
outflow is uniform, that is, at time t + k the reservoir is as 
full as at time t and that the dam never overflows. If Xi 
denote the inflow at time i (i ∈N, i ≥ 1) and the cumulative 
inflow up to time j is 

       ,  then the ‘perfect capacity’ is defined as  ∑
=

=
j

i
ij XZ

1
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R(t, k) is called adjusted range. The definition also applies 
to cases where Xi is negative. To study the scale-
independent properties, it is required to divide R(t, k) by 
the empirical standard deviation of Xi, given by 
 

( )
2

2

1 1

1 1,
t k t k

i i
i t i t

S t k X X
k k

+ +

= + = +

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑   (2) 

The quotient            is called the rescaled 
adjusted range or R/S–statistics. For many hydrological, 
geophysical and climological records, Hurst plotted the 
logarithm of R/S against several values of time lag k and 
observed that for large values of k, log R/S was scattered 
around a straight line with slope greater than ½, i.e., R/S 
behaves like a constant time KH for some H >1/2. This 
feature is known as the Hurst phenomenon after the name 
of famous Hydrologist H. E. Hurst 9 -11. 
Slowly decreasing variances of sample means 

Long memory processes include spatial data, which 

( )2k,k)  S(t,k)  R(t,SR ≥=

Fig. 1: Yearly minimum water level of Nile River [Top] and ACF up to Lag 70 [Bottom] 
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Fig. 2: Plot of VBR data using ln [no. of ATM] (top) along with its ACF (bottom). 
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exhibit long-range dependence. In the result of an 
agricultural experiment12, Smith and Graf showed that V(k), 
the variance of the average yield for a plot of size k can be 
estimated by the sample variance of the averages for plots 
and suggested a relationship of the form  

( )log logV k a b k= +     (3) 

with b around –0.749. Relation (3) implies that V(k) 
converges to zero at a slower rate of convergence than it 
would have happened if the observations were weakly 
dependent or independent. Same behavior was noted for 
several dozens of other agronomical uniformity trials. 
Assuming that for each pair of positions (t, s), correlation 
ρ(t, s) depends on the Euclidian distance between t and s 
only, it has been proved that if ρ(t, s) = ρ(⏐t, s⏐) decays 
asymptotically like⏐t - s⏐4H-4 for some H in between 
½<H<1, then V(k) converges to 0 (zero) like a constant 
times k2H-2. If the observations for different plots are 
independent or the correlation decay fast, then V(k) decays 
like a constant times K-1. 
 
RESULTS AND DISCUSSION 

Long memory processes: Intuitively, long-range 
dependence or long memory processes means that the 
positive correlation of a stationary process decays very 
slowly to zero than expected from independent 
observations. Let Xt be a stationary process and let us 
assume that there exists a real number α∈(0,1) and a 
constant cρρ > 0 such that  

( )
lim 1
k

k

c k α

ρ

ρ
−→∞

=
⎡ ⎤⎣ ⎦

      (4) 

Then Xt is called a stationary process with long 
memory or long-range dependence or strong 
dependence or stationary process with slowly decaying 
correlation or long-range correlation.  Equation (4) 
simply implies that the correlations ρ(k) are 
asymptotically equal to a constant cρρ time k-α, 0<α<1. 
In terms of the Hurst parameter H = 1 - α/2, long 
memory occurs for ½<H<1. 

Imposing a restriction on spectral density, long-
range dependence can also be equivalently defined in 
terms of spectral density. Let Xt be a stationary 
process and let there exists a real number β∈ (0,1) and 
a positive constant cff such that  

( )
0

f

f
lim 1

c βλ

λ

λ −
→

=
⎡ ⎤⎣ ⎦

      (5) 

Equation (5) indicates that the spectral density f(λ) has 
a pole at zero that is equal to a constant cff times λ-β  
for some 0<β<1. 

It may be noted that the definition given above is 
an asymptotic one that only tells about the ultimate 
behavior of the correlation as the lag tends to infinity 
but does not specify the correlation for any fixed finite 
lag. It merely determines the rate of convergence, not 
the absolute size.  
 
Self-similar process: A body is called geometrically 
self-similar if the same geometric structures are 
observed irrespective of the distance from which the 
body has been looked at. A stochastic process X(t) 
(∀t∈R+, the set of real numbers greater than or equal 
to zero) is called self-similar with self-similarity 
parameter H>0, if for c>0,  

( ) ( )tXcctX H
d
≅        (6) 

i.e., the finite dimensional distributions of X(ct) are 
identical to the finite dimensional distributions of cH X(t). 
H is also called Hurst parameter, a scaling index. Equation 
(6) explains the fact that for all (t1 , t2 , …., tk ) ∈Rn with 
n∈N and c>0, cH (X(t1), X(t2),…, X(tk)) has the same 
distribution as (X(ct1), X(ct2), …X(ctk)). That means the 
typical sample paths of a self-similar process look 
qualitatively the same, independent of the distance from 
which one looks at them. 
 
Estimation of self-similarity parameter 

The self-similarity parameter, H, which determines the 
strength of the correlation, needs to be estimated in many 
cases. Efforts have been made to approach the problem of 
testing for and estimating the degree of self-similarity from 
four different angles: (1) Time domain analysis based on 
the R/S statistics; (2) Analysis of the variances of the 
aggregated processes; (3) Periodogram based analysis in 
the frequency domain and (4) Correlogram based analysis 
on the time domain. A brief description of the 
corresponding statistical and graphical methods and their 
applications in analyzing the Nile and VBR data set are 
given next. 

 
Rescaled adjusted range R/S  

To infer the degree of self-similarity is the objective of 
the R/S analysis of an empirical record. This graphical 
heuristic approach tries to exploit the information in a 
given record as much as possible. Let us consider a sample 
of n observations and subdivide the sample into p non 
over-lapping blocks and compute R(t, k)/S(t, k) for 
different time points t and lags k satisfying t + k ≤ n. For 
each lag k, we should have many samples of R/S, as many 
as p for small k and as few as 1 when k is close to the total 
sample size n. Then the plot of the R/S versus k in 
logarithmic scale with k ≈ 10 is called rescaled adjusted 
range plot or pox plot of R/S. The points on the pox plot 
are expected to fluctuate around a straight line with certain 
slope. A straight line is then fitted to the plot. The 
asymptotic slope of the simple least square fitted line 
serves as the estimate of the self-similarity parameter, 
which can take any value from ½<H<1. Since any short-
range dependence in the series typically results in a 
temporary zone near the lower end of the plot, so it is 
better to set a cut-off point for the purpose of estimating H. 
Similarly, it is not wise to use the extreme higher end of 
the plot, because there may be too few points on the plot to 
make reliable estimates. 

Despite some minor difficulties, Pox plots are highly 
useful and give a fair and square view of the self-similar 
nature of the underlying time series and about the degree of 
self-similarity for large samples but unreliable for 
empirical records with small sample sizes. Pox plot has a 
nice property that its asymptotic behavior remains 
unaffected by long-tailed marginal distributions. That is, if 
time series has a long-tailed marginal distribution, the R/S 
statistics still reflect the independence in that the 
asymptotic slope in the pox plot remains to be ½.  

 
Estimation of H for Nile river data set by pox plot  

For Nile River minima, there are 663 observations but 
the plot has been produced with n=660 for the convenience 
of computation. Pox plot is given in Fig. 3 choosing k = 
10p where p = (1,2,..20), t = 60m + 1, with m = (1,2,..). Fig. 
3 shows that, for increasing k, the value of R/S statistics  
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are scattered around a least square fitted line with a slope 
of approximately equal to 0.90. Therefore estimated H for 
Nile River is 0.90. This H which belongs to ½<H<1 clearly 
indicates that Nile River data has a very strong long-range 
dependence as was anticipated from Fig. 1. 
  
Estimation of H for VBR data set by pox plot  

VBR data set has 1000 observations, therefore, n = 
1000. Taking k = 10p where p = (1,2,..20), t = 60 m + 1, 
with m = (1,2,..), Fig. 4 gives the Pox plot for VBR data. 
The estimated H for VBR data set found from this figure is 
0.95. This value of H once again implies that VBR data has 
a very strong long-range dependence as was guessed from 
the Fig. 2 (ACF Plot). From pox plots of R/S, it is clear 
that both Nile and VBR data set has long-range 
dependence. To confirm it further and for the comparison 
purposes of H values, the dependence structure is once 
again checked with the help of other techniques starting 
with Variance-time plot followed by Periodogram and 
Correlogram methods. 
 
Variance-time plot 

One of the salient features of self-similar process is 
that sample mean decreases more slowly than the 
reciprocal of the sample size. Variance of the sample mean 
is given by ( ) ( )0c,cnXVar 2H2

n >≈ − . For estimating H, 
calculate sample means mk21 X...,.........X,X  for mk sub series 
of length k with the integer time lag k lying in 2 ≤ k ≤ n/2.  
Overall mean can be given by,  

( ) ( )∑
=

=
km

1i
i

k
kX

m
1kX       (7) 

Now sample variance, s2(k) of the sample means ( ),kX i
 i 

= 1, 2, ..mk can be calculated as13-14, 

( ) ( ) ( ) ( )( )∑
=

− −−=
km

1j

2
j

1
k

2 kXkX1mks   (8) 

The variance-time plots are obtained by plotting log s2(k) 
against log k and by fitting a simple least square line 
through the resulting points in the plane ignoring the small 
values of k. For large values of k, the points in the plot are 
expected to be scattered around a straight line with a 
negative slope 2H-2. For short-range dependence or 
independence among the observations, the slope is = -1.  
Values of the estimated asymptotic slope between –1 and 0 
(zero) suggest self-similarity, and an estimate for the 
degree of self-similarity is given by H = 1 + ½(slope). It is 
demonstrated here that with sample sizes of the magnitude 
of the Nile river data set or VBR data set, variance-time 
plots give reasonably accurate picture about the self-similar 
nature of the underlying time series and about the degree of 
self-similarity.  
 
Estimating H for Nile data by Variance-time plot: 
Variance time plot of Nile river minima is shown in Fig. 5, 
where the points in the plot are scattered around a straight 
line with a slope of –0.28, which clearly indicate the 
presence of long–term dependence among the observation 
of Nile River.  The estimated value of H for Nile is H = 1 
+(-0.28/2) = .86 approximately.  
 
Estimating H of VBR data by Variance-time plot: Fig. 6 
gives the Variance time plot of VBR data set and suggests 
that variance of sample means converges to zero at a slower 
rate than K-1 and the points in the plot are scattered around 
a straight line with a slope of –0.29 indicating the presence 
of long–term dependence among the observation. In this 
case, the estimated value of H is 0.855. 
 
Periodogram method 

In the frequency domain, analysis of time series is 
merely the analysis of a stationary process by means of its 
spectral representation. From the modifications of 
Herglotz’ theorem first by Blomfield followed by 
Brockwell & Davis 14, the periodogram can be given by 

2
1

02
1)( ∑

−

=

=
N

j

j
jN eX

N
I λ

π
λ     (9) 

where λ is the Fourier frequency, N is the number of terms 
in the time series and Xj is the data of the given series. To 
estimate H, first, one has to calculate this periodogram. 
Since IN(λ) is an estimator of the spectral density, a series 
with long-range dependence should have a periodogram, 
which is proportional to |λ|1-2H close to the origin. Then a 
regression of the logarithm of the periodogram on the 
logarithm of the frequency λ should give a coefficient of 1-
2H. The slope of the fitted straight line is the estimate of 1-
2H. 
 
Estimating H of Nile by Periodogram method: The points 
in Fig. 7 are randomly scattered around a LS fitted line that 
has a slope of –0.095 indicating the presence of the long 
memory in the data of Nile river. However, estimating H 
based on this straight line may not be wise because the 
points don’t necessarily imply that the trend should be well 
represented by a straight line. 
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Fig. 4: Pox plot of R/S for VBR data set. 
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Estimating H of VBR by Periodogram method: From Fig. 
8 it is evident that the points are randomly scattered. It is 
neither fair nor wise to estimate H by fitting a line because 

the points don’t seem to follow the line adequately. 
However, a negative slope of –0.42 indicates the presence 
of strong long-range dependence in the VBR data. 

Fig. 9: The Correlogram of Nile data set. 
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Correlogram method 
In time series analysis, plot of ACF (autocorrelation 

function) is known as correlogram where the estimated 
correlation can be given in terms of auto-covariance 
function γ(k) as14 

)0(ˆ
)k(ˆ

)k(ˆ
γ
γ

=ρ        (10) 

It has already been observed that slow decay of 
correlation, which is proportional to k2H-2 for ½<H<1 
indicates the long-memory process. Therefore, the plot of 
the sample autocorrelation should exhibit this property. A 
much better plot for the handling of long-range dependence 
is the plot of ACF in logarithmic scale. If the asymptotic 
decay of the correlation is hyperbolic, then the points in the 
plot should be approximately scattered around a straight 
line with a negative slope of 2H-2 for the long memory 
processes but for short memory, the points should tend to 
diverse to minus infinity at an exponential rate. If the time 
series is long enough or if the series has strong long-range 
dependence, then this log-log correlogram is useful. 
Correlogram is useful as a preliminary heuristic approach 
to the data. Some pitfalls of sample correlation which are 
less known can be found in Mandelbrot3,7. Even though it 
is neither widely used nor attractive method for estimation, 
still H, the self-similarity parameter, can be estimated by 
this method deriving an equation of the form 

2Ĥ2k)1Ĥ2(Ĥ)k(ˆ −−=ρ . 
 
Estimating H of Nile by Correlogram method: ACF plot 
in logarithmic scale in Fig. 9 suggests a slow decay of 
correlation. Points in the plot are scattered around a LSE 
(Least Squared Error) line with a slope of –0.44 once again 
confirming the long-range dependence structure of Nile 
river. Estimated H (equal to 0.78) is required to analyze 
carefully as there are large number of points lying a bit far 
from the fitted line.  
 
Estimating H of VBR data by Correlogram: In Fig. 10, 
the ACF plot in log-scale is not showing any clear linear 
trend, rather suggesting some curvilinear nature that may 
be an indication of the second order self-similarity. It 
would be unfair to estimate H by this method especially for 
VBR data set. 
 
CONCLUSIONS 

A number of heuristic methods to estimate self-
similarity parameter H have been presented and applied to 
two different kinds of data set (Nile and VBR) and 
observed that pox plot of R/S and variance-time plot give 
better estimates. It may be mentioned that, these are 
heuristic graphical methods and there is no guarantee that 
all methods should work for every data set with the same 
sort of accuracy. For Nile River data set, it has been 
observed that the estimated value of H vary for different 
methods. For Nile, estimated H are 0.90 from R/S statistics, 
0.86 from variance-time plot and 0.78 from the 
correlogram while periodogram method failed to produce 
any reasonable estimate. Variation in H values may be 
brought about due to the fact that no cut-off points were set 
while fitting a straight line. 

For VBR data set, H = 0.95 from R/S statistics and 
0.86 from variance-time plot while two other methods were 
not simply good enough to provide any realistic estimate. 
Analysis of this H values suggests that R/S statistics and 
Variance-time plots give reliable estimate than other two 
and can be used for estimating self-similarity parameter H. 

In some cases, periodogram and correlogram can serve the 
purpose of estimation as correlogram did for Nile River but 
failed with VBR data set. So, while estimating H using 
these heuristic methods, one has to be very careful and 
analytic about the derived value of H as well as the nature 
of the data set. 
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