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Abstract: In the present paper, the effects of viscous dissipation and pressure stress work on free convection flow along a 
vertical plate have been investigated. Joule heating and heat conduction through a wall of finite thickness are considered in 
the investigation. With a goal to attain similarity solutions of the problem, the developed equations are made dimensionless 
by using suitable transformations. The non-dimensional equations are then transformed into non-similar forms by 
introducing non- similarity transformations. The resulting non-similar equations together with their corresponding 
boundary conditions based on conduction and convection are solved numerically by using the finite difference method along 
with Newton’s linearization approximation. Numerically calculated velocity profiles, temperature profiles, skin friction 
coefficient and the surface temperature distributions are shown both on graphs and tables for different values of the 
parameters entering into the problem. 
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INTRODUCTION 

Free convection flow is often encountered in cooling 
of nuclear reactors or in the study of the structure of stars 
and planets. Along with the free convection flow, the 
phenomenon of the boundary layer flow of an electrically 
conducting fluid up a vertical flat plate in presence of joule 
heating and magnetic field is also very common because of 
their applications in nuclear engineering in connection with 
the cooling of reactors. Ackroyd(1) studied the stress work 
effects in laminar flat plate natural convection flow. Free 
convection from a vertical permeable circular cone with 
pressure work and non-uniform surface temperature has 
been illustrated by Alam et al.(2). In a subsequent paper (3), 
they studied the effect of pressure stress work and viscous 
dissipation in natural convection flow along a vertical flat 
plate with heat conduction. Combined effect of viscous 
dissipation and Joule heating on the coupling of conduction 
and free convection along a vertical flat plate has been 
studied by Alim et al.(4). Gebhart(5)  has shown that the 
viscous dissipation effect plays an important role in natural 

convection in various devices which are subjected to large 
deceleration or which operate at high rotational speeds and 
also in strong gravitational field processes on large scales 
(on large planets) and in geological processes. Joshi and 
Gebhart(6) have shown the effect of pressure stress work 
and viscous dissipation in some natural convection flows. 
Miyamoto et al.(7) studied the effect of axial heat 
conduction in a vertical flat plate on free convection heat 
transfer. Pozzi and Lupo(8) have shown the coupling of 
conduction with laminar natural convection along a flat 
plate. 

With this understanding Takhar and Soundalgekar(9) 
have studied the effects of viscous and Joule heating on the 
problem posed by Sparrow and Cess(10), using the series 
expansion method of Gebhart(5). Zakerullah(11) investigated 
the viscous dissipation and pressure work effects in 
axisymmetric natural convection flows. In the present 
work, we have investigated the viscous dissipation and 
pressure effect on the skin friction and the surface 
temperature distribution on a vertical flat plate placed in a

 

Nomenclature 

B plate thickness vu ,  velocity components  
cp specific heat u, v dimensionless velocity components 
d (Tb - T∞)/ T∞ yx,  Cartesian coordinates  
f dimensionless stream function  x, y dimensionless Cartesian coordinates  
g acceleration due to gravity    
h dimensionless temperature 
J Joule heating parameter 

Greek symbols 

L reference length,  ν2/3 /g1/3 β coefficient of thermal expansion 
l length of the plate ε pressure work parameter 
N viscous dissipation parameter η dimensionless similarity variable 
p coupling parameter, p = (κf /κs)(b/L)d1/4  κf, κs fluid and solid thermal conductivities 
Pr Prandtl number µ , ν dynamic and  kinematic viscosities of the fluid 
T temperature  θ dimensionless temperature  
Tb temperature at outer surface of the plate ρ density of the fluid    
Ts solid temperature  σ electrical conductivity  
T∞ fluid asymptotic temperature  ψ stream function  
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viscous incompressible and electrically conducting fluid in 
presence of Joule-heating. 

The transformed non similar boundary layer equations 
together with the boundary conditions based on conduction 
and convection were solved numerically using the implicit 
finite difference method with Keller box scheme by 
Keller(12) along with Newton's linearization approximation 
method. We have studied the effect of the Prandtl number 
Pr, the viscous dissipation parameter N, the Joule-heating 
parameter J and the pressure work parameter ε on the 
velocity and temperature fields as well as on the skin 
friction and surface temperature. The calculation is carried 
out for a fluid with low Prandtl number i.e., liquid metals. 
 
GOVERNING EQUATIONS OF THE FLOW 

Consider the steady two dimensional laminar free 
convection boundary layer flow of a viscous 
incompressible and electrically conducting fluid along a 
side of a vertical flat plate of thickness ‘b’ insulated on the 
edges with temperature Tb maintained on the other side in 
the presence of a uniformly distributed transverse magnetic 
field. The flow configuration and the coordinate system are 
shown in figure 1. 

The mathematical statement of the basic conservation 
laws of mass, momentum and energy for the steady viscous 
incompressible and electrically conducting flow are given 
as  

0q∆ ⋅ =
r           (1) 

2( . )q q p q J B Fρ µ∇ = − ∇ + ∇ + × +
r r rr r r   (2) 

( ) ( ) ( ) ( ) φµκρ +×+∇∇=∇−∇ uBJTPqTqC p

rrrr ...   (3) 

Where ( , )q u v=
r , u  and v  are the velocity components 

along the x  and y  axes, respectively, F
r

 is the body force 
per unit volume which is defined as -ρg, the terms J

r  and 
B
r

 are respectively the current density and magnetic 
induction vector and the term J B×

r r
 is the force on the fluid 

per unit volume produced by the interaction of the current 
and magnetic field in the absence of excess charges, T is 
the temperature of the fluid in the boundary layer , g is the 
acceleration due to gravity,  κ is the thermal conductivity 
and Cp is the specific heat at constant pressure and µ is the 
viscosity of the fluid, 

0eB Bµ=
r , µe being the magnetic 

permeability of the fluid and B0 is the uniformly distributed 
transverse magnetic field of strength. In the energy 
equation the viscous dissipation, pressure work and Joule 
heating terms are included. After introducing the Ohm’s 
law for current density-velocity, ( )J q Bσ= ×

r rr  and the 

Boussinesq approximation, ( )1 T Tρ ρ β∞ ∞= − −⎡ ⎤⎣ ⎦
 the basic 

equations (1) to (3) become: 

           (4) 

( )
22
0

2

B uu u uu v g T T
x y y

σν β
ρ∞

∂ ∂ ∂
+ = + − −

∂ ∂ ∂
  (5) 

22
2 20

2 ( )
p p p p

BT T T u T u Pu v u
x y c y c y C x C

σκ ν β
ρ ρ ρ

∂ ∂ ∂ ∂ ∂
+ = + + +

∂ ∂ ∂ ∂ ∂

 (6) 

The appropriate boundary conditions to be satisfied by 
the above equations are  

00 == vu ,   at  0y =  

∞→→ TTu ,0 as y → ∞        (7) 

 

 
Figure 1: Physical configuration and coordinates system. 

 
The temperature and the heat flux are considered 
continuous at the interface for the coupled conditions as 
given by Miyamoto et al.(7). That is, at the interface, 

0( )s so
y

f

k T T
k y y =

∂ ∂
=

∂ ∂
 

           (8) 
Where ks and kf are the thermal conductivities of the solid 
and the fluid, respectively. The temperature Tso in the solid 
is given by Pozzi and Lupo(8) as 

{ }( ,0) ( ,0)so b
yT T x T T x
b

= − −       (9) 

Where T(x,0) is the unknown temperature at the interface 
to be determined from the solutions of the equations. We 
observe that the equations (4)-(6) together with the 
boundary conditions (8)-(9) are non-linear partial 
differential equations, which have been solved numerically 
and are described in the following sections. 
 
TRANSFORMATION OF THE EQUATIONS 

Equations (4)–(6) may now be non-dimensionalized 
by using the following dimensionless variables:  

1/ 4 1/ 2 1/ 4,  ,  ,  ,  
b

x y T Tx y d u d u v d v
L L L L T T

ν ν θ ∞

∞

−
= = = = =

−
 

2 / 3

1/ 3 ,  ( )bL d T T
g
ν β ∞= = −

       (10) 

As the problem of natural convection, has no characteristic 
length, L has been defined in terms of  ν and g that are the 
intrinsic properties of the system. The reference length 
along the ‘y’ direction has been modified by a factor d-1/4 in 
order to eliminate this quantity from the dimensionless 
equations and the boundary conditions. For exterior 
conditions, we know hydrostatic pressure, / eP x gρ∂ ∂ = −  

and ρ = ρe, and the pressure work parameter ε = (gβ x)/CP 
which is less than one as suggested by Gebhart(5). Using 
the above relations (10), the non-dimensional form of the 
governing equations are: 
 
           (11) 

           (12) 
 

( ){ }
( )

2
2 2

2

1 ( )
Pr

x b

p b

g T T Tuu v N J u
x y y y C T T

β θθ θ θ ∞ ∞

∞

+ −∂ ∂ ∂ ∂
+ = + + −

∂ ∂ ∂ ∂ −
 (13) 
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Where Pr = 
fpC κµ  is the Prandtl number, J = 

( )2 1/ 2
0 p bB d C T Tσ ν ρ ∞−  is the Joule-heating parameter and 

N = )(22
∞−TTcLd bpν  is the dimensionless viscous 

dissipation parameter. 
The corresponding boundary conditions (7) - (8) take 

the following form: 

u = v = 0 , θ - 1= p   at  y = 0     (14) 

u→0, v→0   as y→∞       (15) 

where P is the pressure and p is the conjugate conduction 
parameter given by p = (κf / κs) (b/L) d1/4. Here, the 
coupling parameter 'p' governs the described problem. The 
order of magnitude of  'p' depends actually on b/L and 

/f sκ κ , d1/4 being the order of unity. The term b/L attains 

values much greater than one because of L being small. In 
case of air, /f sκ κ  becomes   very small when the vertical 

plate is highly conductive i.e. sκ > > 1 and for materials, 
O( /f sκ κ ) = 0.1 such as glass. Therefore, in different cases 

'p' is different but not always a small number. In the 
present investigation, we considered p = 1 which is 
accepted for b/L of O(κf / κs). To solve the equations (11) – 
(13) subject to the boundary conditions (14) to (15), the 
following transformations were introduced for the flow 
region starting from up stream to down stream. 

( )4/5 1/ 20 1/5 1/ 20 1/5 1/5(1 ) ( , ), (1 ) , (1 ) ,x x f x yx x x x h xψ η η θ η− − − −= + = + = +  

           (16) 

Here η is the dimensionless similarity variable and h(x, η)  
is the dimensionless temperature. ψ is the stream function 
which satisfies the equation of continuity and 

x
vand

y
u

∂
∂

−=
∂
∂

=
ψψ .  

Then the equations (11) and (13) transformed to the 
following non dimensional forms, respectively: 
 

2 2/5 1/1016 15 6 5 (1 ) ( )
20(1 ) 10(1 )

x x f ff ff f Mx x f h x f f
x x x x

′+ + ∂ ∂′′′ ′′ ′ ′ ′ ′′+ − − + + = −
+ + ∂ ∂

 

           (17) 

( ) ( ) ( )
7 1

2 25 2

1/5

1 16 15 1 1
Pr 20 1 5 1

1

b

xh fh f h Nxf Jx x f
x x

x T h ff hf x f h
x T T x x

ε

−

∞

∞

+′′ ′ ′ ′′ ′+ − + + +
= +

⎧ ⎫⎛ ⎞+ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞′ ′ ′ ′− + = −⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟− ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 

(18) 
In the above equations the primes denote differentiation 
with respect to η. The boundary conditions (14)-(15), take 
the following forms: 

0),(,0),(
)0,()1()1()0,(,0)0,()0,( 20/15/14/1

=∞′=∞′
+++−=′=′=

xhxf
xhxxxxhxfxf  

           (19) 

The solutions of the above equations (17) and (18) together 
with the boundary conditions (19) enable us to calculate 
the skin friction τ and the surface temperature θ (x, 0) from 
the following expressions. 

τ = µ x2/5 (1+x)-3/20 f "( x, 0)       (20) 

θ = x1/5 (1+x)-1/5 h( x, 0)        (21) 

METHOD OF SOLUTION 
The numerical methods used is finite difference 

method together with Keller box Scheme by Keller(12). To 
begin with, the partial differential Eqs. (17)-(18) are first 
converted into a system of first order differential equations. 
Then these equations are expressed in finite difference 
forms by approximating the functions and their derivatives 
in terms of the central difference formula. Denoting the 
mesh points in the (x,η)-plane by xi and ηj where i = 1, 2, . 
. . , M and j = 1, 2, . . . , N, center difference 
approximations are made, such that those equations 
involving x explicitly are centered at (xi-1/2 , ηj-1/2) and the 
remainder at (xi , ηj-1/2), where 1

1/ 2 12 ( )j j jη η η− −= +  etc. The 

above central difference approximations reduce the system 
of first order differential equations to a set of non-linear 
difference equations for the unknown at xi in terms of their 
values at xi-1. The resulting set of nonlinear difference 
equations are solved by using the Newton’s quasi-
linearization method. The Jacobian matrix has a block-
tridiagonal structure and the difference equations are 
solved using a block-matrix version of the Thomas 
algorithm; the details of the computational procedure have 
been discussed further by Cebecci and Bradshow(13) and 
widely used by Hossain and Alim(14)  and Hossain et al.(15).  
 
RESULTS AND DISCUSSION 

Solutions are obtained for Prandtl number, Pr = 0.1, 
0.72, 1.0,1.74, the viscous dissipation parameter, N = 0.1, 
0.4, 0.7, 1.0 and the Joule-heating parameter, J =0.1, 0.3, 
0.6, 0.8. We used another pressure work parameter ε = 0.1, 
0.4, 0.7, 0.9. If we know the values of the functions f (x, η), 
h (x, η) and their derivatives for different values of the 
Prandtl number Pr and the Joule-heating parameter J, we 
may calculate the numerical values of the surface 
temperature θ (x, 0) and the velocity gradient f '' (x, 0) at 
the surface that are important from the physical point of 
view. 

Fig.2 (a) and Fig.2 (b) deal with the effect of the 
viscous dissipation parameter N (= 0.10, 0.40, 0.70, 1.00) 
on velocity and temperature distributions at Pr = 0.72, J = 
0.7 and ε = 0.4. From Fig. 2(a), it is revealed that the 
velocity profile f ′(x, η) moves slightly upward with the 
increase of the viscous dissipation parameter N which 
indicates that viscous dissipation enhances the fluid motion 
slightly. In Fig.2 (b), it is shown that the temperature 
profile h (x, η) is influenced by the increasing values of N 
at small values of η.  

It is seen from Fig. 3(a) that an increase in the Joule 
heating parameter is associated with a considerable 
increase in velocity. Near the surface of the plate (small η) 
the velocity increases, becomes maximum, then decreases 
and finally (large η) approaches to zero. The maximum 
values of the nondimensional velocities f ′(x, η) are 0.4251, 
0.4428, 0.5213, 0.5542 for J  = 0.10, 0.30, 0.60, 0.80 
respectively and each of which occurs at η = 1.3025 for the 
first maximum value and η = 1.3693 for the 2nd, 3rd and 
4th maximum values. Here, it is observed that the f ′(x, η) 
increases by 30.37% as J increases from 0.1 to 0.8.  Fig. 
3(b) shows the distribution of the temperature profiles h (x, 
η) against η for the same values of the Joule heating 
parameter J and each of which reaches the maximum at the 
surface. Thus h (x, η) increases by 16.23% as J increases 
from 0.10 to 0.80.  

Fig. 4 (a) and 4(b) deal with the effect of the pressure  

y∂
∂θ
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Figure 2a: Variation of dimensionless velocity profiles  
f′ (x,η) with dimensionless distance η for different values of 

viscous dissipation parameter N. 
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Figure 2b: Variation of dimensionless temperature 
profiles h (x,η) against dimensionless distance η for 
different values of viscous dissipation parameter N. 
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Figure 3a: Variation of dimensionless velocity 
profiles f′ (x,η) against dimensionless distance η for 

different values of Joule heating parameter J. 

Figure 3b: Variation of dimensionless temperature 
profiles h (x,η) against dimensionless distance η for 

different values of Joule heating parameter J. 
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Figure 4a: Variation of dimensionless velocity 
profiles f′ (x,η) against dimensionless distance η 

for different values of pressure work parameter ∈. 
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Figure 4b: Variation of dimensionless temperature 
profiles h (x,η) against dimensionless distance η 

for different values of pressure work parameter ∈. 
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Figure 5a: Variation of dimensionless velocity 
profiles f′ (x,η) against dimensionless distance η for 

different values of Prandtl number Pr. 
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Figure 5b: Variation of dimensionless temperature 
profiles h (x,η) against dimensionless distance η for 

different values of Prandtl number Pr. 
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Figure 6a: Variation of skin friction coefficient 
f ″(x, 0) with dimensionless distance x for different 

values of viscous dissipation parameter N. 
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Figure 6b: Variation of surface temperature  
θ (x, 0) with dimensionless distance x for 

different values of viscous dissipation parameter 
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Figure 7a: Variation of skin friction coefficient 
f ″(x, 0) with dimensionless distance x for 

different values of pressure work parameter ∈. 
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Figure 7b: Variation of surface temperature  
θ (x, 0) with dimensionless distance x for 

different values of pressure work parameter ∈. 
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Figure 8a: Variation of skin friction coefficient 
f ″(x, 0) with dimensionless distance x for 

different values of Joule heating parameter J. 
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Figure 8b: Variation of surface temperature  
θ (x, 0) with dimensionless distance x for different 

values of Joule heating parameter J. 
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f ″(x, 0) with dimensionless distance x for 

different values of Prandtl number Pr. 
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Figure 9b: Variation of surface temperature  
θ (x, 0) with dimensionless distance x for 

different values of Prandtl number Pr.
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work parameter ε (= 0.1, 0.4, 0.7, 0.9) on velocity and 
temperature distributions at Pr = 0.72, N = 0.07 and J = 
0.005 on the velocity profile f ′(x, η) and the temperature 
profile h(x, η). From Fig. 4(a), it is revealed that the 
velocity, f ′(x, η) changes very small with the increase of 
the pressure work parameter ε  which indicates that the 
influence of the pressure work parameter on the fluid 
motion is insignificant. Fig. 4(b) shows that the 
temperature profiles h(x, η) are also insensitive to the  
increasing values of pressure work parameter ε.  

Fig. 5(a) depicts the velocity profile for different 
values of the Prandtl number, Pr (= 0.10, 0.72, 1.0, 1.74) 
for N = 0.07, J = 0.005 and ε = 0.80.  Corresponding 
distribution of the temperature profile h(x, η) in the fluids 
is shown in Fig. 5(b). From Fig. 5(a), it is seen that if the 
Prandtl number increases, the velocity of the fluid 
decreases. On the other hand, from Fig. 5(b) it is observed 
that the temperature decreases within the boundary layer 
due to increase of the Prandtl number Pr.  

Numerical values of the velocity gradient f ″(x, 0) and 
the surface temperature θ (x, 0) are depicted graphically in 
Fig.6 (a) and 6(b), respectively against the axial distance x 
for different values of the viscous dissipation parameter N 
(=0.1, 0.4, 0.7, 1.0) for the fluid having Prandtl number Pr 
= 0.72. It is seen from Fig. 6(a) that the skin-friction f ″ (x, 
0) increases when the viscous dissipation parameter, N 
increases. It is also observed in Fig. 6(b), that the same 
result holds for surface temperature θ (x, 0) distribution. 

From Fig. 7(a), it is observed that increase in the 
value of the pressure work parameter ε leads to increase of 
the value of the shear stress coefficient f ″ (x, 0) which is 
usually expected. Again from Fig. 7(b) it is illustrated that 
the increase of the pressure work parameter ε leads to 
increase of the surface temperature θ (x, 0). 

The effect of Joule heating parameter J (= 0.1, 0.3, 
0.6, 0.8) on the skin-friction f ″ (x, 0) and the surface 
temperature distribution θ (x, 0) against x for Pr = 0.72, N 
= 0.70 and ε = 0.80 is shown in Fig. 8(a)-8(b). It is found 
that the values of the skin-friction f ″ (x, 0) and the surface 
temperature distribution θ (x, 0) both increases for 
increasing values of Joule heating parameter J. Here, it has 
been observed that the values of the skin-friction f ″ (x, 0) 
increases by 76.73% and the surface temperature θ (x, 0) 
increases by 83.26% while J increased from 0.10 to 0.80. 
From Fig. 9(a), it is be observed that increase in the value 
of the Prandtl number Pr (= 0.1, 0.72, 1.0, 1.74) leads to 
decrease of the value of shear stress f″ (x, 0).  Similar 
results hold in surface temperature distribution θ (x, 0) 
shown in Fig. 9(b) for the same values of Prandtl number 
Pr at J = 0.005, N = 0.007 and ε = 0.60. 

Numerical values of the shear stress coefficient and 
the surface temperature distribution for different values of 
the Prandtl number Pr while N = 0.007, ε = 0.60 and J = 
0.005 are shown in Table 1. From Table 1, it is found that 
the values of skin friction coefficient decrease at different 
position of x for Prandtl number Pr = 0.1, 0.72, 1.0, 1.74. 
Near the axial position x = 3.1340, the rate of decrease of 
the local shear stress coefficient is 41.3763% as the Prandtl 
number Pr changes from 0.1 to 1.74. Furthermore, it is 
seen that the numerical values of the surface temperature 
decrease for increasing values of Prandtl number Pr. This 
suggests that the interface of the plate having thickness ‘b’ 
remains heated more in the fluid with lower Prandtl 
number than that of the higher Prandtl number and at the 

same axial position x = 3.1340, the rate of decrease of 
surface temperature is 17.1856% as the Prandtl number 
changes from 0.1 to 1.74. 
 
CONCLUSIONS 

The effect of viscous dissipation N and pressure work 
parameter ε for Prandtl number Pr (= 0.1, 0.73, 1.0, 1.74) 
on natural convection boundary layer flow along a vertical 
flat plate has been studied introducing a new class of 
transformations. The transformed non-similar boundary 
layer equations governing the flow together with the 
boundary conditions based on conduction and convection 
were solved numerically using the implicit finite difference 
method together with Keller box scheme. The coupled 
effect of natural convection and conduction required that 
the temperature and the heat flux be continuous at the 
interface. From the present investigation, the following 
conclusions may be drawn: 
• The skin friction and the velocity increase with 

increasing values of the viscous dissipation 
parameter N, the pressure work parameter ε and the 
Joule heating parameter J. 

• Increased values of the viscous dissipation 
parameter N leads to increase in the surface 
temperature as well as the velocity. 

• Increased values of the pressure work parameter ε 
do not affect the surface temperature significantly. 

• Increased values the Joule heating parameter J leads 
to increase in the surface temperature as well as the 
velocity. 

• The skin friction coefficient, the surface 
temperature and the velocity decrease over the 
whole boundary layer with the increase of the 
Prandtl number Pr. 
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