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Abstract: Natural convection in an inclined differentially heated square enclosure containing internally heated fluid has 
been investigated numerically using the Galerkin finite element method. The horizontal walls are adiabatic, while the side 
walls are isothermal but kept at different temperatures. Flow and heat transfer characteristics through isotherms, 
streamlines and average Nusselt numbers have been presented for the external Rayleigh number 103 to 106, internal 
Rayleigh number 105 to 108 and inclination angles 0º to 30º. The obtained computational results indicate that the strength of 
the convective currents depends on the internal energy. Heat removal rate is optimized at zero inclination angle for 
relatively weak external heating mode for all values of internal energy.  
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INTRODUCTION   
 

During the last four decades, significant attention was 
given to the study of natural convection in enclosures 
subjected to simultaneous volumetric internal heat 
generation and external heating or cooling. This was due to 
the occurrence of natural convection in a wide range of 
application areas that include nuclear reactor design, post-
accident heat removal in nuclear reactors, geophysics and 
underground storage of nuclear waste, energy storage 
systems and others. Literature review shows various 
studies have been published on the mechanism of natural 
convection in heated enclosure containing heat generating 
fluids with different geometrical parameters and boundary 
conditions. 

The published literature dealing with externally 
heated enclosures has been reviewed by Ostrach1 and also 
by Catton2. The literature related to internally heated 
enclosures had been compiled by Kulack et al.3. Baker et 
al.4 and Cheung5 examined the available data for both 
internally heated layers with equal upper and lower 
boundary temperatures and internally heated layer with 
insulated lower boundary, and have presented correlation 

for internally heated layers with unequal boundary 
temperatures. Kikuehi et al.6 and Boon-Long et al.7 
investigated experimentally the heat transfer behavior in a 
horizontal layer with simultaneous internal and external 
heating. Suo-Anttilla and Catton8 used the Landau method 
to determine the heat transfer in a horizontal, internally 
heated layer which is cooled from below and then 
conducted an experimental study of the same problem9. 

Steinberner and Reinke10 performed experiments with 
a rectangular geometry of both the upper and lower walls 
being cooled for RaI varying from 5 × 1010 to 3 × 1013. 
Based on a numerical modeling effort, they developed 
correlation for the Nusselt number. Kulacki and 
Goldstein11 experimentally measured heat transfer from a 
plane layer containing internal energy sources with equal 
boundary temperature. Lee and Goldstein12 performed a 
laboratory experiment similar to that performed by Kulacki 
and Goldstein but they employed an inclined square 
enclosure. Acharya and Goldstein13 presented a numerical 
solution of natural convection in the externally heated 
square boxes of different aspect ratios and containing 
internal energy sources. Their study covered RaI from 104 
to 107 and RaE from 103 to 106, and enclosure inclination

 
 

 

Nomenclature 

g gravitational acceleration [m/s2] X, Y non-dimensional coordinates 
k thermal conductivity [W/m2.K] 
L length of the heat source [m] Greek symbols 

Nu Nusselt number Φ inclination angle [deg] 
p pressure [Pa] α thermal diffusivity [m2/s] 
P dimensionless pressure  β thermal expansion coefficient [1/K] 
Pr Prandtl number η kinematic viscosity [m2/s] 
Q internal volumetric heat generation θ dimensionless temperature 
RaI internal Rayleigh number ρ fluid density [kg/m3] 
RaE external Rayleigh number 
T temperature [K] Subscripts 

u, v dimensional velocity [m/s] c cold wall 
U, V dimensionless velocity H hot wall 
x, y dimensional coordinates o average 
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angle from 30° to 90°. They found that the flow pattern is 
related to the ratio RaE / RaI. Emara and Kulacki14 reported 
a numerical study of thermal convection in a fluid layer 
driven by uniform volumetric energy sources. The sides 
and lower surfaces of the rectangular domain were 
adiabatic walls and the upper surface was either rigid or 
free isothermal boundary. Rahman and Sharif15 conducted 
a numerical investigation for free convective laminar flow 
of a fluid with or without internal heat generation (RaE = 
RaI = 2 × 105) in rectangular enclosures of different aspect 
ratios (from 0.25 to 4), at various angles of inclination, of 
insulated side walls, heated bottom, and cooled top walls. 
They observed that for RaE / RaI > 1, the convective flow 
and heat transfer were almost the same as that in a cavity 
without internal heat generating fluid. Kawara et al.16 
performed experimental study on natural convection in a 
differentially heated vertical fluid layer of Pr = 5.85 with 
internal heating. Fusegi et al.17 reported a numerical study 
on natural convection in square cavity with uniform 
internal heat generation and differentially heated vertical 
sidewalls. Fusegi et al. 18 also generated results for the 
same problem but considering a rectangular cavity of 
different aspect ratios. These works of Fusegi et al. 
involved high external Rayleigh number RaE = 5 × 107 and 
internal Rayleigh number RaI = 109 to 1010. Their results 
agreed with the experimental results of Kawara et al. Oztop 
and Bilgen19 numerically studied a differentially heated, 
partitioned, square cavity containing a heat generating 
fluid. The vertical walls were isothermal while the 
horizontal walls were adiabatic and an isothermal cold 
partition was attached to the bottom wall. The external and 
internal Rayleigh numbers (i.e. RaE and RaI) ranged from 
103 to 106. They observed two distinct flow regimes based 
on the ratio RaE / RaI. Shim and Hyun20 presented the time-
dependent behavior of natural convection in a differentially 
heated square cavity due to impulsively switched on 
uniform internal heat generation. They concluded that as 
the transient behavior is dependent on RaE / RaI , three flow 
stages were distinguished. 

Baytas21 investigated the effect of the uniformly 
distributed sinusoidal heat source generation on the fluid 
flow and heat transfer within a two-dimensional square 
cavity. Liaqat and Baytas22 studied the conjugate natural 
convection in a square enclosure containing uniform 
volumetric sources and having thick conducting walls. 
They illustrated the importance of performing conjugate 
investigations instead of conventional non-conjugate 
analyses. For a fluid layer, with a lower wall adiabatic and 
upper wall maintained at a constant temperature along with 
constant volumetric generation in the fluid, Kulacki and 
Goldstein23 obtained the critical Rayleigh number, for the 
transition from the conduction to the convection regime. In 
this analysis, the critical Rayleigh number was obtained 
using two methods. The first approach followed the linear 
theory by Rayleigh, discussed in Drazin and Reid24, and 
the second approach was based on the energy method. 
May25 solved the problem of transient natural convection 
using the stream function vorticity method. He reported 
that the periodic solution exists for Ra > 5 × 104. Piazza et 
al.26 and Arcidiacono et al.27-28 analyzed low Prandtl 
number natural convection flows, using the finite volume 
technique. By successively increasing the Grashof number, 
they obtained steady, periodic, and chaotic solutions. 
Relatively less literature is available for the study of 
volumetrically heated cavities using analytical methods. 
Daniels and Jones29 considered a long cavity, whereas a 
similar approach was used by Joshi et al.30 for a tall cavity.  

The aim of this paper is to examine the steady natural 
convection inside a square tilted cavity consisting of two 
horizontal straight adiabatic walls and two vertical walls, 
which are at constant but different temperature. The 
numerical results have been obtained by solving the 
governing equations using the Galerkin finite element 
method. The effects of internal energy, the external energy 
and the inclination angles on the thermo-fluid 
characteristics in the square titled enclosure filled with a 
uniform heat generating fluid have been analyzed. 
Selection of the optimum titled position of the square 
cavity, for which better convective heat transfer has been 
obtained in between the combined effects of RaI and RaE, 
has also been performed.  

 
PROBLEM DEFINITION 
 
 Schematic diagram of the problem with coordinate 
system and boundary conditions are shown in Fig. 1. It 
consists of a square enclosure whose left vertical wall is 

 
Fig. 1: Schematic diagram of the physical domain 

maintained at a temperature TH while the right vertical wall 
is held at a temperature TC and top and bottom walls are 
kept adiabatic. It is filled with a uniform heat generating 
fluid with volumetric rate of Q. The flow and attendant 
heat transfer are characterized by the externally 
controllable Rayleigh number RaE = (βg∆tL3)/(ηα) and the 
Prandtl number Pr = η/α. Here, ∆t denotes the imposed 
temperature difference between the two sidewalls (∆t =TH 
–TC). The introduction of internal heat generation is 
represented by the internal Rayleigh number RaI = 
(βgQL3)/(ηα). 
 
MATHEMATICAL MODEL 
 

It is assumed that the fluid is Newtonian and 
incompressible, the flow is laminar and the effect of 
viscous dissipation is negligible. The Boussinesq 
approximation is invoked for the fluid properties to relate 
density changes to temperature changes, and to couple in 
this way the temperature field to the flow field. Then the 
governing equations for steady natural convection can be 
expressed in the dimensionless form as:  

0U V
X Y
∂ ∂

+ =
∂ ∂

         (1) 
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RaE sin
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X Y Y X Y

RaE cos
Pr

Φ θ
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2 2
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X Y Pr Ra PrX Y E

θ θ θ θ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟+ = + +
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠

  (4) 

The dimensionless parameters in the equations above are 
defined as follow: 

, , , ,

2
, , .2

o H C
o

H C

x y u L v LX Y U V
L L

T T T Tp LP T
T T 2

η η

θ
ρη

= = = =

− +
= = =

−

 

The major dimensionless parameters explicitly appearing 
in the equations are the previously defined RaE, RaI, and 
Pr.  The boundary conditions for the present problem are 
specified as follows: 
 

All the walls of the cavity U = 0,V = 0  

Bottom and top walls 0
Y
θ∂
=

∂
 

Right side wall θ = -0.5  
Left side wall θ = 0.5  

 
The heat transfer parameter of interest is defined as below. 

1

00 X
Nu dY

X
θ

=

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫   

 
FINITE ELEMENT FORMULATION 
 

The velocity and the temperature distributions and 
linear interpolation for the pressure distribution according 
to their highest derivative orders in the differential Eqs. 
(1)-(4) as 
( ) α αU X,Y = N U , ( ) α αV X,Y = N V , 
( ) α αX,Y = Nθ θ , ( ) λ λP X,Y = H P . 

where α = 1, 2, 3, … …, 9; λ= 1, 2, 3; Nα are the element 
interpolation functions for the velocity components and the 
temperature, and Hλ are the element interpolation functions 
for the pressure. To derive the finite element equations, the 
method of weighted residual is applied to the Eqs. (1)-(4) 
to get 
 

αA

U VN + dA= 0
X Y
∂ ∂⎛ ⎞

⎜ ⎟∂ ∂⎝ ⎠∫  (5)

α λA A

2 2
E
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U U Ra+ N + dA+ N sinΦ θ dA
X Y Pr
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I
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E

N U V dA N dA
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α α

α
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+

∫ ∫

∫
 (8)

where A is the element area. Gauss’s theorem is then 
applied to Eqs. (6)-(8) to generate the boundary integral 
terms associated with the surface tractions and heat flux. 
Then Eqs. (6)-(8) become, 

0
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Here Eqs. (5)-(7) specify surface tractions (Sx, Sy) along 
outflow boundary S0 and Eq. (8) implies velocity 
components and fluid temperature or heat flux that flows 
into or out from domain along wall boundary Sw. 
Substituting the element velocity component distributions, 
the temperature distribution, and the pressure distribution, 
the finite element equations can be written in the form, 

x yβ βαβ αβ
K U + K V = 0  (9)

( )
x y x

xx yy u

β γ γ γ µαβγ αβγ αµ

E
β αβ βαβ αβ α

K U U + K VU +M P +

RaS +S U - sinΦ K θ = Q
Pr

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (10)

( )
x y

y xx yy v

β γ γ γαβγ αβγ

E
µ β αβ βαµ αβ αβ α

K U V +K VV +

RaM P + S +S V - cosΦ K θ = Q
Pr

⎛ ⎞
⎜ ⎟
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 (11)

( )
x y

xx yy

β γ β γαβγ αβγ

I
β ααβ αβ α

E

K U θ + K V θ +

1 RaS + S θ - K = Q
Pr Ra Pr

θ

 (12)

where the coefficients in element matrices are in the 
form of the integrals over the element area and along 
the element edges S0 and Sw as, 

x α β, xαβ A
K = N N dA∫ , 

y α β, yαβ A
K = N N dA∫ , 

x α β γ, xαβγ A
K = N N N dA∫  

y α β γ, yαβγ A
K = N N N dA∫ , 

αβ α βA
K = N N dA∫ , 

xx α, x β, xαβ A
S = N N dA∫  

yy α, y β, yαβ A
S = N N dA∫ , 

x α µ,xαµ A
M = H H dA∫ , 

y α µ, yαµ A
M = H H dA∫  

u
0

α x 0α S
Q = N S dS∫ , 

v
0

α y 0α S
Q = N S dS∫ , 

w
α w wα S

Q = N q dSθ ∫  

α αA
K = N dA∫ . 

 
These element matrices are evaluated in closed-form ready 
for numerical simulation. Details of the derivation for these 
element matrices are omitted herein for brevity. The 
derived finite element equations, Eqs. (9)-(12), are 
nonlinear and are solved by applying the Newton-Raphson 
iteration technique by first writing the unbalanced values 
from the set of the finite element Eqs. (9)-(12) as, 

p x yβ βα αβ αβ
F = K U + K V  

u x y x xx yy

u

β γ γ γ µ βα αβγ αβγ αµ αβ αβ

E
αβ β α

F = K U U + K V U + M P +(S + S )U

Ra- sinΦ K θ - Q
Pr

⎛ ⎞
⎜ ⎟
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v x y y xx yy
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GRID SENSITIVITY TEST 
 

The numerical procedure used to solve the governing 
equations for the present work is the finite element based 
adapting meshing technique. The application of this 
technique is well documented in31. It provides the smooth 
solutions at the interior domain including the corner 
regions. A nine nodded triangular elements are used in this 
paper. Solutions were assumed to converge when the 
following convergence criteria was satisfied for every 
dependent variables at every point in the solution domain 

6new old

old

ψ -ψ -10 
ψ

≤  

where ψ represents a dependent variable U, V, P, and θ.  
 
 In order to obtain grid independent solution, a grid 
refinement study is performed for RaE = 103, RaI = 105, and 
Φ = 0°. Figure 2 shows the convergence of the average 
Nusselt number, Nu, at the heated surface with grid 
refinement. It is observed that grid independence is 
achieved with 6392 elements where there is insignificant 
change in Nu.  
 
CODE VALIDATION 
 

In order to validate the numerical code, the results are 
compared with those reported by Shim and Hyun20 and 
Oztop and Bilgen19. It is seen from Table 1 that average 
Nusselt numbers are in good agreement. The streamlines 
and isotherms of the present investigation for RaE = 105 
and RaI = 107 as shown in Fig. 3 are analogous to those 
obtained by Shim and Hyun20. This accuracy provides 
credence to the present computation. 
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Figure 2: Convergence of Nu with Grid Refinement for 
RaE = 103, RaI = 105 & Φ = 0°. 
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Fig. 3: Comparison of flow and thermal fields 

Table 1: Comparison of average Nusselt number with Shim 

and Hyun20 and Oztop and Bilgen19. 

Nu 

RaI RaE 
Shim and 

Hyun20 

Oztop and 

Bilgen19 
Present 

106 105 – 0.01 + 0.1 – 0.1 

107 105 – 66.0 – 59.0 – 43.02 

 
RESULTS AND DISCUSSION 
 

In this investigation, streamlines and isotherms inside 
the inclined square enclosure and the average Nusselt 
number distribution at the heated surface have been 
examined and discussed for the external Rayleigh number, 
RaE, varied from 103 to 106, and the internal Rayleigh 
number, RaI, varied from 105 to 108. The working fluid is 
chosen as air with Prandtl number, Pr = 0.71. The 
inclination angle is ranging from 0° to 30°. 
 
Thermo-fluid characteristics 
 
The evolution of flow, when the effect of internal heat 
generation is dominated for different inclination angles and 
RaE = 103 is depicted in Fig. 4. When there is no tilting 
effect of the enclosure, the flow and thermal fields 
experience the strong influence of internal heat generation 
for RaI = 105 and RaE = 103. Pre-existing external heating 
is fully overwhelmed by the relative effect of internal heat 
generation. The whole cavity is occupied by two 
recirculating cells; i.e. both counter-clockwise and 
clockwise cells near the hot and cold side walls due to the 
negative and positive buoyancy effect respectively. The 
sinking motion near the cold wall is intensified compared 
to that near the hot wall due to the differential buoyancy 
effect. With an increase in RaI, the circulations are turned 
into irregular shape due to vigorous sinking motion causing 
from the higher interior temperatures. Thereby heat 
transfer rate is enhanced. At Ф = 30o, lower value of RaI  
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Fig. 4: Variation of streamlines for external Rayleigh number, RaE = 103. 
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Fig. 5: Variation of isotherms for external Rayleigh number, RaE = 103. 
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Fig. 6: Variation of streamlines for external Rayleigh number, RaE = 106. 
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Fig. 7: Variation of isotherms for external Rayleigh number, RaE = 106. 
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(but sufficiently strong for generating the internal heat 
generation effect), the flow pattern has different nature 
with fluid moving upwards in the interior of the enclosure 
and moving down both the hot and cold walls. It is 
remarkable that the sinking flow along the hot wall is 
sturdy whereas it is weaker along the cold wall. This is 
because the x-component of buoyancy effect due to 
external heating opposes the flow due to internal heating 
moving down the hot surface and aids the flow due to 
internal heating moving down the cold surface. As the 
inclination angle increases, the effect of x-component of 
buoyancy becomes profound. For this reason, the 
downward flow over the cold surface increases in size and 
becomes faster while the sinking flow near the hot wall is 
reduced in size and becomes slower. 

The upshot of the internal heat generation and the 
inclination angle of the cavity on the thermo-fluid scenario 
for RaE = 103 are depicted in Fig. 5. The isotherms 
represent that the thermal boundary layers near the hot and 
cold walls increases and is concentrated as the effect of the 
internal heat generation increases. In the presence of 
relatively low value of RaI at Ф = 0o, isotherms are almost 
linear at the upper part of the cavity, indicating diffusion 
dominated heat transfer but at lower part of the interior of 
cavity convection is liable for the heat transport 
phenomenon. At higher value of RaI, isotherms tend to be 
horizontally uniform and vertically linear at the upper 
portion of the enclosure. However, in the bottom part of 
the cavity interior, in line with the emergence of two 
circulating cells of comparable magnitude, the isotherms 
are divided into two groups. The total thermal energy in the 
cavity is on increase. It should be marked that the boundary 
layer behavior at the hot and cold walls decreases as the 
inclination angle is increased. With the increment of the 
tilting angle, the isotherms near the bottom part of the cold 
wall spread and rigorous plume formation is found at 
higher value of RaI. 

Considerations are given to the cases when the effects 
of external heating and internal heat generation are 
comparable. Figure 6 is illustrative of the sequences of 
flow and thermal fields for such cases. Performing order of 
magnitude analysis on RaI = 105 and RaE = 106, implies 
that the relative impact of internal heat generation is minor. 
The flow is attributed by the presence of a single clockwise 
circulation cell, which occupies much of the cavity and a 
secondary and a tertiary vortices are formed inside the 
cavity. Increased impact of the internal heat generation 
provides an aiding (or opposing) buoyancy effect to the 
fluid in the vicinity of the cold (or hot) wall. The sinking 
(or rising) motion in the boundary layer on the cold (or hot) 
side wall is enhanced (or hindered). At higher value of RaI, 
the hindrance of the flow is so strong that a sinking motion 
is established near the hot wall. Thus two irregular 
circulating cells of differential strength and opposite 
directions of motion are introduced. The irregularity of the 
circulating cells is appeared due to the chaotic flow, which 
in turns marks the better convective thermal performance. 
The convective heat transfer is dictated by the inclination 
angle. Increasing the inclination angle gives a complex 
discernible flow field scenario until the RaI is equal to RaE. 
At small value of Ф, five vortices of very minute in size 
and strength are visible at the interior of the cavity, but the 
primary circulation of clockwise direction of motion 
through the hot wall to the cold wall is still domineer. As 
RaI increases, those small vortices are merged to the 
primary vortex of relatively higher intensity of circulation 
than that at low RaI. For higher value of RaI (RaI = 108), 

two irregular circulations are observed. The circulation cell 
near the vicinity of the cold wall is intensified at the 
bottom part of the cavity. Thereby heat is solely transferred 
by buoyancy-driven-convection mechanism. Further 
increase in Ф reveals that the convective currents are 
overwhelmed by the diffusive currents at low RaI. 
 The influence of the internal heat generation and the 
inclination angle on the fluid and thermal fields inside a 
square cavity is presented in Fig. 7, while the higher 
external heating is imposed. At Ф = 0o, the isotherms 
represent that the diffusion is the principal mode of heat 
transfer when relative impact of RaI is small. At higher RaI, 
the isotherms remain unaltered at the upper part but 
vigorous plume formation appears at the lower part of the 
cavity being a sign of the better convection heat transfer. 
At Ф = 30o, the isotherms are diagonally linear even at low 
RaI which means that the buoyancy effect is suppressed by 
the diffusion effect. Prolonged clusters of isotherms near 
the bottom wall suppress the plume formation at higher 
value of RaI resulting relatively low thermal performance 
compared to that of the zero inclination angles. 
 
Heat Transfer Characteristics 
 
Figure 8 illustrates the variation of average Nusselt number 
for different values of internal heat generation and the 
inclination angles at different values of external heating. In 
the presence of internal heat sources, the value of Nu along 
the hot side wall is governed by the direction and strength 
of the flow adjacent to the hot wall. At each RaI depending 
on RaE, part of the interior hot fluid flows downward along 
the hot surface forming a counter-direction circulation near 
the hot wall. Thereby the average Nusselt number along 
hot wall becomes negative which means that the hot wall 
absorbs the heat from the interior higher temperature fluid. 
In general, average Nusselt number remains invariant to 
the RaI ranging from 105 to 106. Increasing the impact of 
internal heat generation causes the rapid rise in average 
Nusselt number. Maximum thermal performance is 
obtained for the lower value of external heating. Moreover 
a discernible thermal behavior is observed in Fig. 8(d). 
Since the order of magnitude of external heating is 
comparable to internal heat generation, the positive value 
of average Nusselt number marks that there is rising 
motion near the hot wall though the circulation feels 
retardation due to the buoyancy effect generated by 
internal heat generation. Therefore, as RaI increases in 
magnitude, the average Nusselt number decreases up to 
certain value of RaI (RaI ~ 3×107). After that it increases in 
negative direction indicating the sinking motion near the 
hot side wall. 
 
CONCLUSION 
 

Natural convection in a tilted square enclosure 
subjected to the differential heating boundary conditions 
and containing internal energy sources has been 
investigated using finite element discretizition scheme. 
Results indicate that in the presence of relatively weak 
external heating mode, the diffusion heat transfer is 
prominent for the lower value of internal heat generation 
whereas the convection outweighs the diffusion for the 
higher value of internal energy. It is noticed that the 
convective currents always prevail at the bottom part of the 
cavity whatever its magnitude is. When the higher 
differential temperature is imposed at the side walls of the 
cavity, the relative value of external energy is amplified  
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Fig. 8: Variation of the average Nusselt number along with RaI for (a) RaE = 103, (b) RaE = 104, (c) RaE = 105 and  

(d) RaE = 106 

which in turn accelerates the convective currents even at 
the lower value of internal heat generation. Average 
Nusselt number is decreased with an increment of the tilted 
angle. In general, optimum heat transfer performance is 
obtained at zero inclination angle. The synopsis is that 
relatively weak external heating mode yields the better 
thermal performance for all values of internal energy 
generated within the fluid. 
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