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Abstract: The workspace of a Robot is determined by an analytical method. The method is applicable to 
kinematic chains that can be modeled using the Denavit-Hartenberg representation for serial kinematic chains. 
This method is based upon analytical criteria for determining singular behavior of the mechanism. By 
manipulating the Jacobian of the robot by the row rank deficiency condition, the singularities are computed. 
Then these singularities are substituted into the constraint equations to parameterize singular surfaces. The 
boundary conditions of the joints are substituted to obtain the other set of singularities. These singularities are 
substituted in the wrist vector to obtain the range of motion of the robot wrist in three dimensional space, which 
is the workspace of the Robot. These singularities are plotted in Matlab to develop all the surfaces enveloping 
the workspace of the Robot. The priactical examples of RV-M1 MITSIBUSHI ROBOT and 3 DOF spatial 
manipulator are treated with this method. 
 
Key Words: Jacobian, Workspace, Singularities, Degree of freedom 
 
INTRODUCTION 
Numerical methods for determining the workspace 
boundaries of serial manipulators have been 
developed in recent years. Exact computation of 
the workspace and its boundary is of significant 
importance because of its impact on manipulator 
design, manipulator placement in an environment, 
and manipulator dexterity. Ricard and Gosselin1 
explained one method to determine the Workspace 
of complex planar Robotic Manipulators. In this 
paper the authors gave a method which is based on 
the use of joint limits to obtain equations 
describing the limiting curves. These limiting 
curves are then segmented at their mutual 
intersections and validated. The resulting set of 
curves from the envelope of the workspace. 

Ceccarelli2 presented a synthesis algorithm for 
three revolute manipulators by using an algebraic 
formulation of workspace boundary and explained 
a synthesis algorithm for general three degree of 
freedom manipulator. The synthesis equations are 
formulated as a set of nonlinear algebraic equations 
whose unknowns are workspace structural 
coefficients. The authors Snyman and Plessis3 gave 
an optimization approach to the determination of 
the boundaries of manipulator workspace. 
This numerical method consists of finding a 
suitable radiating point in the output coordinate 
space and then determining the points of 
intersection of a representative pencil of rays, 
emanating from the radiating point, with the 
boundary of the accessible set.  

 
 
Nomenclature 
 

qi Joint Variables 

θi,αi Angles in degrees 
i-1Ti Transformation Matrix 
0R1

 Rotation Matrix 
0Pi

 Position Vector 

Φ(q) Constraint Equation 

Ĵ(q) Jacobian of Position Vector 

Ψi (µi) Set of Surfaces 
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Yang et al4 have described that placement 
of an open loop robotic manipulator in a working 
environment is characterized by defining the 
position and orientation of the manipulator’s base 
with respect to a fixed reference frame.   

Kumar and Waldron5 presented another 
algorithm to compute the manipulator’s workspace. 
Bi and Lang6 have proposed a forward kinematic 
model for determining the workspace of tripod 
machine tool. The joint motions are used to 
calculate the workspace. Malek and Yeh7 explained 
a broadly applicable formulation for representing 
the boundary of swept geometric entities using 
Jacobian rank deficiency conditions. A constraint 
function is defined as one entity is swept along 
another. Boundaries in terms of inequality 
constraints imposed on each entity are considered 
which gives rise to an ability of modeling complex 
solids. The intersection curves between two 
parametric surfaces are determined by the method 
explained by Malek and Yeh8. This paper presents 
a method for determining the intersection curves of 
two intersecting parametric surfaces using 
continuation methods. Cao et al9 used a numerical 
method based on random probatility to generate the 
planar boundary curves of spatial robot in its main 
working plane. Then 3D shape and volume of robot 
workspace are generated by commercial software 
unigraphics. Determination of workspace 
boundaries is also referred by Jo et al10. Pitarch et 
al11, Malek12, Tsai and Soni13, Sheen and Luo14. 
Malek and Yang15 demonstrated a mathematical 
formulation for creation of solid models. It is 
shown that Denavit-Hartenberg representation 
method adopted from kinematics is well suited for 
the representation of soid models that are created as 
a result of multiple sweeps. 
 
METHODOLOGY 
In order to analytically find expressions for the 
boundary surfaces of manipulators, it is necessary 

1. To develop a set of analytical criteria to 
obtain the positioning of the wrist in terms 
of generalized coordinates. 

2. Determine the boundary surfaces due to 
singularities associated with the set, and 

3. Determine the subset of these surfaces due 
to joint limits. Combine all the surfaces to 
develop the workspace. 

The mathematics to determine above is explained in 
the following sections. 
 
Finding wrist accessible position vector 
The first step is to determine the wrist accessible 
position vector of the robot. For determining the 
wrist accessible output set the property that, two 
coordinate systems is orthogonal to the z-axis of 
the other system are related by a Euclidean motion 
depending on four parameters, is used. Consider 

two coordinate frames in space, the first denoted by 
x0, y0, z0 with origin at O0 and the second by x1, y1, 
z1 with origin at O1. The point P is an arbitrary 
point in space. The vector 0v is the vector 
coordinates of P with respect to x0, y0, z0 reference 
frame. 1v is the vector of coordinates of P with 
respect to frame 1. 0b1 is the vector describing the 
origin of frame 1 with respect to frame 0 as shown 
in figure 1.  

Using geometry, the position of point P with respect 
to frame 0 can be expressed as: 
      0v=0b1+0R1

1v                                                         (1) 

 
             Figure..1 Representation of a point P 
 

Where 0R1 = [x1 y1 z1] is the rotation matrix 
relating the orientation of both frames. In order to 
achieve a compact representation and to simplify 
the mathematics between subsequent coordinate 
frames, the homogeneous representation of a 
generic vector v can be introduced as the vector 
v*=[vT 1]T formed by adding a fourth unit 
component. The coordinate transformation can be 
written as 
                              

       0T1= ⎥
⎦

⎤
⎢
⎣

⎡
10

1010 bR
                                           (2) 

Hence, transforming a vector from one coordinate 
frame to another is written as                                    
       0v*=0T1

1v*                                                     (3) 
In order to generate the matrix relating any two 
transformations, a minimal representation of only 
four parameters is necessary to describe one 
coordinate system with respect to the other. These 
four parameters are called Denavit-Hartenberg (D-
H) parameters. The D-H representation provides a 
systematic method for describing the relationship 
between adjacent links. The 4 x 4 transformation 
matrix describing a transformation from link (i-1) 
to link i for a revolute joint is : 
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Figur.2.    Link coordinates system and its 
Parameters 
 
where θi , depicted in Fig. 2.2, is the joint angle 
from xi-1 to the xi axis, di is the distance from the 
origin of the (i-1)th coordinate frame to the 
intersection of the zi-1 axis with the xi , ai is the 
offset distance from the intersection of the zi-1 axis 
with the xi axis, and αi is the offset angle from the 
zi-1 axis to the zi axis. 
The homogeneous transformation matrix 0Ti that 
specifies the configuration of the ith frame with 
respect to the base coordinate system is the product 
of successive transformation matrices of  i-1Ti ,                                      

 0Ti=0T1.
1T2…..i-1Ti=∏

=

i

j 1
j-1Tj                                        (5)            

       i-1Ti= ⎥
⎦

⎤
⎢
⎣

⎡
10

00 ii PR
                                            (6) 

where 0Ri is the rotational matrix from the i-1 
coordinate frame to 0th coordinate frame. And 0Pi is 
the position vector with respect to the 0th 
coordinate frame. This is also called wrist 
accessible position vector when i=number of 
degrees of freedom of the robot. 
In order to determine the boundary of the wrist-
accessible output set for a mechanism, the 
singularities (both internal and external) can be 
computed by proper manipulation of the Jacobian of 
the mechanism. The first order and second order 
singularities are computed in this thesis work. These 
singularities are substituted in the wrist vector to get 
the range of motion of the wrist. 
For a given configuration of the manipulator, the 
generalized coordinates satisfy independent 
holonomic kinematic constraint equations of the 
form:- 
                                 Φ(q)=0                                    (7) 
Where Φ:Rn→Rl is a smooth function, and l is the 
number of constraint equations. In addition, the 
generalized coordinates q are subject to inequality 
constraints representing limits. 

          qi
min≤qi≤qi

max ,i=1,2,3,…,n                        (8) 
 
To impose joint limits of the actuators in terms of 
the generalized variables, it is possible to transform a 

constraint of the form as equation 2.14 into an 
equation by introducing a new generalized 
coordinate λi, such that the inequality constraint of 
equation 2 can be written as: 
                qi=ai+bisinλi                                                                       (9) 
 
where ai=(qi

max+qi
min)/2 and bi=(qi

max-qi
min)/2 are 

midpoint and half-range of the inequality constraint. 
 
Jacobian of the wrist accessible output set 
The first order singularities are computed by 
equating the determinant of the Jacobian of the 
mechanism to zero and then computing the roots. 
The constraint Jacobian of the constraint function 
Φ(q) for a certain configuration can be calculated 
as 

Ĵ(q)= ⎥
⎦

⎤
⎢
⎣

⎡
∂
Φ∂

iq
q)(

                                                 (10) 

The above equation is called the Jacobian of the 
position vector.  
The Jacobian has dimension n×3. Where n is the 
number of independent variables, which may be a 
square or non square matrix. The method of 
computing Jacobian singularities is generalized to 
computing sets of singular parameters.  This 
formulation generalizes the Jacobian method to the 
computation of the boundary of any manipulator 
with any number of independent variables i.e. 
degrees of freedom. The Jacobian method is 
extended to a row rank deficiency method, i.e. the 
possibility of handling a non square Jacobian. In 
this general formulation, the resulting Jacobian is 
not square and there are three types of singular 
behavior observed. The term singular behavior is 
given to geometric entities that exist in the 
accessible set that cause difficulties in satisfying 
equation 10. For a singular entity inside the 
accessible set, it is not possible to cross the entity 
in a direction normal to its surface. 
 If the Jacobian is square matrix then the 
singularities are computed by putting the 
determinant of the Jacobian equal to zero such that 
                                                  qΦ =0 

  Where Φq= ⎥
⎦

⎤
⎢
⎣

⎡
∂
Φ∂

iq
q)(

                                     (11) 

From equation (10) and solving the resulting 
equation in terms of the independent variables. The 
solution gives first set of singularities. 
 
Rank-deficiency singularity set 
In general, the Jacobian matrix is not square. 
Therefore, a rank-deficiency criterion is developed. 
Consider the 3×n matrix ĴT(q) over Rn . If rank(Ĵ) 
=r, then Ĵ has r linearly independent rows. Let Ĵ1 be 
an 3×r sub Jacobian of Ĵ whose columns are 
precisely the r linearly independent columns of Ĵ 
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mentioned above. The rank of Ĵ1 is also r. Now let 
Ĵ2 be an r×r sub Jacobian of Ĵ whose columns are 
linearly independent. Thus, for Ĵ2 the determinant 
det( Ĵ2)≠0. 
The singular behavior occurs for the set of 
singularities that satisfies: 
  
 S1={p€Rn;dim Null(Ĵ(q))≥1,for some q}           (12) 
 
Where p is a set of constant generalized 
coordinates (subset of q) that renders the analytic 
Jacobian singular and Null is the nullspace of the 
matrix Ĵ, i.e. the rows that are dependent. 
Substituting the set p€S1 into wrist vector yields a 
hyperentity. The hyperentities are geometrical 
entities which appear in the boundary. These 
hyperentities may be on the boundary or inside it.  
The set S1 can be determined by setting the 
determinants of the sub Jacobians (Ĵ1, Ĵ2,…….) of Ĵ 
to zero and seeking simultaneous solutions. 
 
Rank-deficiency of reduced-order accessible set 
At a boundary of one of the surfaces (a parametric 
limit is encountered), the edge of a geometrical 
entity is swept. To determine those entities, it is 
necessary to reduce the order of the accessible set 
by substituting a value for one of the parameters. 
Both upper limits and lower limits are considered. 
Once a reduced set is obtained, the null space 
criteria of equation 2.10 is applied to reduced set. 
Each variable in the set is constrained by an upper 
and lower limit in terms of inequality constraints 
such as equation 2.8. Substituting a limit (qi

min or 
qi

max) into wrist point yields the position vector for 
the reduced order set (i.e. the set has lost one 
degree of freedom by fixing one link).  
In this case, the Jacobian of  Φ*(q*) = Φ(q*, qi

0), 
where qi

0 is the limit of the parameter i, and 
q*=[q1,q2,……..]T is the vector of reduced set, can 
be defined as: 

    ĴR(q*)= ⎥
⎦

⎤
⎢
⎣

⎡
∂
Φ∂

*
*)(

q
q

                                        (13) 

Define a second singularity set analogous to 
equation 12 as: 
 
  S2={p€Rn;dim Null(Ĵ(q*))≥1,for some q*}       (14) 
 
The set S2 can be determined by equating the 
determinants of the sub Jacobians of (Ĵ(q*)) to zero 
and simultaneously seeking a solution. 
 
Constraint singularity set 
A boundary is reached when the number of 
constant parameters equals the dimensions of nXw 
or 0Pn. 
Entities that are due to active parameter constraints 
are called constraint singularity sets and are defined 
by: 

S3={ p€Rn; [qi
0,qj

0], for i, j=1 to n; i≠j}              (15) 
 
Where qi

0 and qj
0
 are the limits of equation 2.8. The 

constraint singularity set is a combination of all 
constant parameters, i.e. for each combination of 
the limits of the constraints, there exists a 
hyperentity. 
 
Total singularity set  
The total singularity set S generated by the above 
criteria is : 
    
   S=S1US2US3                                                                         (16) 
 
S1, S2, and S3 are singularities given by equations 
13, 14, and 15. 
It may be possible that singularities generated by 
one set may be identical to others generated by 
another set. 
 
Workspace boundary 
Substituting each singularity into the accessible 
output set, a set of surfaces Ψ1(µi) are 
parameterized such that 
 
Ψi (µi) = [ Ψ1(µi), Ψ2 (µ2),……,Ψm (µm)]            (17)  
 
Where i = 1,…., m. These surfaces determine the 
boundary of the workspace 
 
EXPERIMENTAL RESULTS 
Generating workspace of rv-m1 mitsibushi 
robot 
 
Fig 3. shows the joints and dimensions of RV-M1 
Mitsibushi robotic manipulator. The DH parameters 
are given in table 3.1. 

 
Figure.3.: Mitsubishi RV-M1 Robot joints and 
dimensions 
 
D-H PARAMETERS 
The D-H parameters for RV-M1 robot manipulator 
are given in the following table. 
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            Table1: D-H parameters for RV-M1 

 
Where the joint limits are: 
                                   -1500≤q1≤1500 
                                     -300≤q2≤1000 

                                   -1100≤q3≤00 

                                     -900≤q4≤900 

After applying above described method, The first 
singularity set for the RV-M1 robot is: 

                                 S1= [(q3=0, q4=0)] and this 
singularity plot is shown in Fig.4. 
 
 
 

 
 

 
Figure.4 Singularity plot at (q2=-30, q4=0) 

 
Similarly all other singularities are generated and 
are plotted in MATLAB to get all the singular 
surfaces. And finally all these singularities are 
combined to obtain the workspace of RV-M1. 
which is shown in Fig.5 
 
               
  
 
 

 
Figure.5 Three dimensional view of workspace 

RV-M1 Mitsubishi robot 
 
Workspace of 3dof spatial manipulator 
 
Fig. 6 shows a 3 dof manipulator. 

 
Fig.6 A 3dof manipulator 

 
The application of method described above to this 
manipulator generates a set of 7 singularities. 
Combining all the singular surfaces generates the 
three dimensional workspace, which is shown in 
fig. 7. 

 
Fig. 7 Workspace of 3dof manipulator 

 
Other examples 
The method explained in this paper is used to 
determine the workspace of other configuration of 
manipulators. The fig. 8 (a) and (b) shows the 

Joint θi di αi ai 
1 q1 152 900 0  
2 q2 0 0 250 
3 q3 0 0 160 
4 q4 0 0 72 
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workspaces of other combinations of revolute and 
prismatic joints.  
                          

 
 
 
 
 
 
 
 
 
 

 
Fig 8 (a) Workspace of RRP and (b) Workspace of 

RPR configuration 
 
 CONCLUSIONS 

An analytical formulation for determining 
the robot workspace is presented. This formulation 
is used to develop the Matlab tool box. The 
workspace constraint function was formulated in 
terms of generalized coordinates including, 
inequality constraints imposed on each joint. It was 
shown that Jacobian rank-deficiency conditions 
usually applied in robotics analysis to determine 
degenerate conditions are employed here to 
generate singular sets. It was shown that three types 
of singularities may be obtained. First and second 
types are due to rank-deficiency of the constraint 
Jacobian matrix and of the reduced-order Jacobian 
matrix. The third type of singular behavior is due to 
active parametric constraints. Then the Matlab code 
is developed to plot all the calculated singularities, 
which generates the workspace of the Robot. This 
method is applied to the RV-M1 Mitsubishi robot. 
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