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Abstract: Finding Singular configurations (singularities) is one of the mandatory steps during the design and 
control of mechanisms. Because, in these configurations, the instantaneous kinematics is locally undetermined 
that causes serious problems both to static behavior and to motion control of the mechanism. This paper 
addresses the problem of determining singularities of a 3-PRRR kinematically redundant planar parallel 
manipulator by use of an analytic technique. The technique leads to an input –output relationship that can be 
used to find all types of singularities occurring in this type of manipulators. 
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INTRODUCTION 

A parallel manipulator can be defined as a closed-
loop mechanism composed of an end-effector and a 
fixed base, linked together by at least two 
independent kinematic chains. This type of 
manipulators has been an area of interest for 
researchers in the past decade and has found various 
industrial applications in the recent years. These 
manipulators can offer higher stiffness, higher 
accuracy and higher payload-to-weight ratio with 
regard to serial ones1. 

However, like every other type of manipulators, 
these manipulators have some drawbacks. Smaller 
workspace, reduced dexterity and more complex 
kinematic and dynamic models are problems that 
parallel manipulators have as compared to their serial 
counterparts. 

Most of studies for parallel manipulators, 
regarding kinematics, dynamics and design, have 
been applied to non-redundant parallel manipulators 

e.g. 2. Redundant parallel manipulators have been 
introduced to alleviate some of the shortcomings of 
parallel manipulators that were mentioned before. 

Redundancy in parallel manipulators was first 
introduced by Lee et al 3 and Merlet 4. Merlet 4 
divided the redundancy into three types: 

1. Redundancy caused by putting additional active 
joints in branches (limbs) of the existing system, 
which is the same as redundancy in serial 
manipulators, Fig. 1a. 

2. Redundancy caused by replacing passive joints 
of the branches of the existing system with active 
ones which represents redundancy in joint actuation, 
Fig. 1b. 

3. Redundancy caused by putting additional 
branches, each having instantaneous motion space 
(IMS) greater than or equal to the current IMS, 
which represents redundancy in parallelism, Fig. 1c. 

In some other studies 5, 6, redundancy is divided 
into two main types: Actuation Redundancy and 
Kinematic Redundancy in which all types of 
redundancies stated by Merlet 4 can be obtained. 

Actuation Redundancy is defined as replacing 
existing passive joints of a manipulator by active 
ones. Actuation redundancy does not change 
mobility or reachable workspace of a manipulator but 
entails the manipulator having more actuators than 
are needed for a given task and may be used to 
reduce singularities within the manipulator’s 
workspace7-9. Redundancy in parallel manipulators 
has been investigated by some researchers in the last 
decade, but most of these studies have focused on 
actuation redundancy 10, 11. 

Kinematic redundancy increases mobility and 
actuated-joint degrees of freedom (ADOFs) of 
parallel manipulators. Kinematic redundancy is 
obtained when extra active joints and links (if 
needed) are added to manipulators. For instance, by 
adding one extra active prismatic joint to one limb of 
a 3-RRR planar parallel manipulator, it is converted 
into a kinematically redundant parallel manipulator, 
see Fig. 2. In this example, the resulting redundant 
parallel manipulator has 4- ADOFs, one more than 
the planar task space. Shaded area in Fig. 2 is the 
area that point q1 can cover when the prismatic 
actuator slides within a certain range and linkage p1q1 
rotates around the point p1. All possible locations of 
q1 as a part of linkage p1r1 are located on a full circle 
centered at r1. As a result, an infinite number of 
solutions for inverse displacement problem are on the 
intersection of the two aforementioned regions, i.e., 
these are located on the arc mq1n. Note that the 
inverse displacement problem for each limb of the 
original non-redundant 3-RRR has at most two 
solutions. 
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Figure 1. Three redundant planar parallel manipulators in which “a” and “p” denote active and passive joints 
respectively. 

 

 
 

Figure 2. The 4-ADOFs kinematically redundant 
planar parallel manipulator (2-RRR + 1-PRRR). 

 
One of the most important problems in dealing 

with parallel manipulators is the presence of singular 
configurations in their workspace. At these points, 
manipulator looses or gains one or more degrees of 
freedom and will become scarcely controllable, so 
these configurations must be found and avoided 
during the design step, trajectory planning and 
control stages of manipulator. 

Having an infinite number of solutions for the 
inverse displacement problem is an important 
advantage of kinematically redundant manipulators 
that can be used to avoid singular points.  

In addition, larger workspace and improved 
dexterity are other advantages of kinematic 
redundancy. On the other hand, kinematic 
redundancy results in more controlling parameters 
than required for a set of given tasks 12. 

Singularity analysis of non redundant planar 
parallel manipulators has been investigated by many 

researchers e.g. 13, 14; but in the case of redundant ones, 
this analysis is few e.g. 15, 16. 

This paper focuses on determination of singular 
configurations of a 3-PRRR kinematically redundant 
planar parallel manipulator, shown in Fig. 3, and 
finding all types of singularities occurring in it. 
However, the offered method can be used in 
singularity analysis of all types of relevant 
kinematically redundant planar parallel manipulators. 

 
JACOBIAN MATRICES  

First, Jacobian matrices of the 3-PRRR 
kinematically redundant planar parallel manipulator 
are derived. A 3-PRRR is originally a 3-RRR that 
has three redundant actuated prismatic joints 
resulting in a 6-ADOFs planar parallel manipulator. 
The manipulator, in general form, is depicted in Fig. 
3. 

With reference to Fig. 3, velocity of an arbitrary 
point of the end-effector or its extension, C, can be 
written for the ith leg as  

)()()( riqiripiqipi vCvvvvvC −+−+−+= &&

 (1) 

In which i=1, 2, 3; moreover we have 
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where C&  is the velocity of point C. iρ&  and iθ&  are 
rates of ith prismatic and revolute actuated joints 
respectively; while iγ&  is the rate of ith unactuated 
joint with respect to the base. ei is a unit vector along 
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the direction of ith prismatic joint; ω is angular 
velocity of the end-effector. bi and di are vectors 
directed from pi to qi and from qi to ri respectively 
and finally E is a 2×2 orthogonal matrix rotating 
vectors in a plane through an angle of 90 
counterclockwise, i.e.  
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Substitution of the above relations in Eq. (1) and 
simplification of the obtained expression results in 

CEsEdEbe &&&& =+++ iiiiiii ωγθρ , 3,2,1=i  
 (2) 

Since iγ&  is an unactuated joint, it should be 
eliminated. To this end, we multiply both side of Eq. 
(2) by T

id , then we have 
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Moreover, writing Eq. (3) for i=1,2,3 produces 
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Where 
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t and θ&  are twist and input variable vectors 
respectively. Matrices J and K are 
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in which 
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So we can consider the manipulator as an input–
output device

 
Figure 3. A 6-ADOFs 3-PRRR kinematically redundant planar parallel manipulator. 

 
 

SINGULARITY ANALYSIS 
Gosselin and Angeles17 identified three different 

types of singularities for closed kinematic chains, 
based on the associated direct and inverse Jacobian 

matrices (J and K respectively). In this section, the 
three types of singularities discussed in [17] are 
investigated for the case of manipulator under study. 
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FIRST TYPE OF SINGULARITIES 
First type of singularities (Inverse kinematic 

singularities) consists of a point or a set of points 
where different branches of the inverse kinematic 
problem meet. In redundant parallel manipulators, 
matrix J is not square, therefore the inverse 
kinematic singularities can be said to occur when 
rank of J is lower than degrees of freedom of the 
end-effector that is number of rows of J. Therefore a 
kinematically redundant parallel manipulator is in an 
inverse kinematic singularity when any minor square 
matrix extracted from J is singular. This degeneracy 
can also be identified as a condition that sets 
determinant of JJT to zero4.  
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Eq. (7) is equivalent to 

0)(
3,1

22 =+∏
=m

mm vu  (8) 

Condition (8) is correct when 

ie ⊥ ib  and ib || id  , 1=i  or 2 or 3 (9) 

In other words, first type of singularities occurs 
when one or some of the legs are fully extended or 
folded and direction of correspondent prismatic 
joint(s) is perpendicular to the direction of extended 
or folded leg(s), Fig. 4. Then, motion of actuators of 
the leg(s) does not produce any motion of end-
effector.  
 

 
Figure 4. An example of first type of singularities in 

which legs one and two are in singular poses. 
 

Note that as long as manipulator is not at the 
workspace boundary, the inverse kinematic 
singularities of the manipulator are avoidable as it is 

possible to choose at least a set of solutions which is 
free of inverse singularities. 

 
SECOND TYPE OF SINGULARITIES 

Second type of singularity, occurring only in 
parallel manipulators, consists of a point or a set of 
points where different branches of direct kinematic 
problem meet. This type of singularities occurs when 
determinant of K vanishes. The corresponding 
configuration can be inferred by imposing linear 
dependence of columns or rows of K. 
With reference to Fig. 3, one can write 
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Where di and si are the magnitude of vectors di and si, 
respectively, and αi is the angle between vectors di 
and si. In addition, vector di can be written as 

T
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Introducing Eqs. (10) and (11) into Eq. (6) leads to  
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Inspection of Eq. (12) reveals three instances of 
direct kinematics singularities. The first case occurs 
when elements of the second and third columns are 
linearly dependent, i.e. when 
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where A is a constant. Eq. (13) shows that the first 
case of direct kinematics singularities occurs when 
distal links are parallel. 

Then nullspace of K represents a set of pure 
translations of end-effector along a direction normal 
to di, indicated by vector n in Fig. 5i. End-effector 
can move in that direction even if actuators are 
locked; likewise, a force applied to end-effector in 
that direction cannot be balanced by the actuators. 

The second case in which K is singular occurs 
when elements of the first column are zero, i.e. when 

0sin =iα ,  i=1, 2, 3 (14) 

Considering Fig. 3, in this case, extensions of the 
three vectors di, i=1, 2, 3, intersect at the common 
point C. Since point C is an arbitrary point of the 
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end-effector or its extension, these direct singularities 
take place when all three distal links meet at a 
common point regardless of where it is located (Fig. 
5ii). 

Then, nullspace of K represents a set of pure 
rotations of end-effector about the common 
intersection point. The end-effector can rotate about 
that point even if all actuators are locked; likewise, a 
moment applied to end-effector cannot be balanced 
by the actuators, so manipulator gains some 
additional uncontrollable degrees of freedom. 

The third case occurs when rows of matrix K are 
linearly dependent. Linear dependency between the 
rows has the same meaning as between the columns. 
Linear dependency between any two rows happens 

when two distal links are aligned with the side of the 
end-effector that is between them. Fig. 6 illustrates 
such a configuration for the first and second legs in 
which point C is located on the line passing through 
the vectors d1 and d2. For this configuration we have 

21 sinsin γγ −=  

21 coscos γγ −=  (15) 

0sinsin 21 == αα  

Therefore, in this case, first and second rows of K 
are linearly dependent. 

 

     
 

Figure 5. Examples of second type of singularities in which (i) distal links are parallel (ii) extension of distal 
links intersect at a common point. 

 

 
 

Figure 6. A direct kinematics singularity in which first and second legs are aligned with a side of the end-
effector. 

 
THIRD TYPE OF SINGULARITIES 

Third type of singularities (combined 
singularities) occurs when determinants of JJT and K 
both vanish, such that none of the rows of K 
vanishes. In this type of singularities, the two 
previous types of singularities occur simultaneously. 
We have these singularities whenever extensions of 
three vectors di, i=1, 2, 3, are either parallel or 

concurrent at a common point and at least one leg is 
fully extended or fully folded and the correspondent 
prismatic joint is perpendicular to it. At these 
configurations, motion of actuators of at least one leg 
does not produce any cartesian velocity along the 
corresponding leg axis. As well, end-effector can 
move freely in one or more directions even if all 
actuators are locked and some forces or torque 
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applied to end-effector cannot be balanced by the 
actuators. Figure 7 shows the manipulator in such a 
configuration in which all the three legs are in the 
pose of inverse kinematic singularity and extension 
of distal links intersect at a common point. 
 
CONCLUSIONS 

A summary of redundancy and its advantages was 
presented. It was shown that most of singularities are 
avoidable by use of kinematic redundancy, i.e. by 
considering poses that are singular-free. That is, of 
course, as long as the pose is not on the outer 
boundary of workspace, which is caused by physical 
restriction of the manipulator and it is inevitable; a 3-
PRRR kinematically redundant planar parallel 
manipulator was regarded and its Jacobin matrices 
were obtained. Using these matrices, all singular 
configurations are found. The proposed method 
which is quick, simple and systematic allows a user 
to find loci of singular configurations of any relevant 
manipulator, and thus the user will be able to decide 
whether singularities are acceptable or not. 
 

 
 

Figure 7. An example of third type of singularities in 
which two first singularities occur simultaneously. 
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