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Abstract: Production lot-sizing has a special significance in supply chain taking into account the fact that 
majority of the lot-sizing problems are associated with NP-hard scheduling and sequencing problems. The 
complexity increases exponentially when multi-item capacitated dynamic lot-sizing is considered. The basic 
economic production quantity (EPQ) model minimizes the sum of setup and holding cost under certain 
favorable assumptions. However, when assumptions are removed by introducing more complex constraints, the 
solution procedure becomes extremely difficult to solve. As a result NP-hardness arises which necessitates the 
use of heuristics. The objective of this paper is to minimize the sum of setup and inventory holding costs over a 
time horizon subject to constraints of capacity limitations and elimination of backlogging. As reports reveal, 
algorithm for an optimal solution exists in case of a single item production. But for multi-item problems, no 
algorithm exists which can provide global optimality. This paper develops a model for multi-item problem with 
setup time. Based on the model a program has been executed and feasible solutions have been obtained for the 
bench-mark data.  
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INTRODUCTION 
Due to their importance in industry, dynamic demand 
lot-sizing problems are frequently studied. This paper 
considers the determination of lot-sizes for multiple 
products with capacity restriction that can be 
replenished. A fixed setup cost is incurred whenever 
any product is produced, independently of the 
number or type of products. The demand for each 
item is discrete and varies in time, but is known over 
a given time horizon. Linear holding costs are 
charged on the end-of-period inventories and 
backlogging is not permitted. The variable unit 
purchase cost for each product is constant throughout 
the horizon, so that the purchase cost of any item for 
total demand in the horizon is invariant of the 
replenishment policy. The problem is to determine a 
replenishment schedule for all items that minimizes 
the total setup plus inventory holding cost over the 
horizon. A variety of taxonomies are proposed for 
classifying lot-sizing problems [1]. An important 
problem characteristic is the nature of demand. Static 
demand problems assume a stationary or constant 
demand pattern, while dynamic demand problems 
permit demand to vary. If all demand values are 
known for the duration of the planning horizon, the 
demand stream is defined as deterministic. 
Otherwise, the demand is considered to be stochastic. 
There are two principal types of production system in 
terms of number of products. In single-item 
production planning there is only one end item (final 
product) for which the planning activity has to be 
organized, while in multi-item production planning 

there are several end items. The complexity of multi-
item problems is much higher than that of single-
item problems. When there is no restriction on 
capacity, the problem is said to be uncapacitated, and 
when capacity constraints are explicitly stated, the 
problem is named capacitated. Capacity restriction is 
important and more realistic and directly affects 
problem complexity. Problem solving will be more 
difficult when capacity constraints exist.  
Many dynamic programming solutions exist for lot-
sizing problems, but they are computationally 
complex. For example, when specialized to the 
multi-product dynamic lot-size problem Zangwill's 
method [2] has a computational complexity that is 
exponential in the number of products, while 
Veinott's [3] solutions are computationally 
exponential in the number of time periods. Other 
solutions that are computationally exponential in the 
number of products have also been proposed [1]. 
However, these solutions are of no use for practical 
problems, which usually involve many items and 
many time periods. So efforts have shifted to the 
development of heuristic solutions [4].  
 
OVERVIEW OF LOT-SIZING PROBLEMS  
After an introduction to lot-sizing problems, this 
paper will focus on the single level multi-item 
dynamic capacitated lot-sizing problem (CLSP) 
which is an NP-hard problem [1]. There are five 
other problem variants. These are: the economic lot 
scheduling problem (ELSP), the discrete lot-sizing 
and scheduling problem (DLSP), the continuous 
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setup lot-sizing problem (CSLP), the proportional 
lot-sizing and scheduling problem (PLSP), and the 
general lot-sizing and scheduling problem (GLSP). 
The ELSP [5] is a single-level, multi-item problem 
with stationary demand. The time is continuous and 
planning horizon is infinite. Solving the ELSP where 
capacity restrictions are involved is NP-hard. The 
NP-hard problem DLSP [6] subdivides the (macro) 
periods of the CLSP into several (micro) periods. 
The fundamental assumption of the DLSP is the so-
called all-or-nothing production, which means only 
one item may be produced per period, and, if so, the 
production amount would be as much as using full 
capacity. From this viewpoint, DLSP is called a 
small bucket problem. The CSLP [7] is a step 
towards a more realistic situation compared to DLSP. 
In CSLP the all-or-nothing assumption, that seems to 
be strict and makes efficient implementation of 
mathematical programming approaches possible, 
does not exist any more, but still only one item may 
be produced per period. The basic idea behind the 
PLSP [8] is to use the remaining capacity for 
scheduling a second item in the particular period, if 
the capacity of a period is not used in full. This is in 
fact the shortcoming of the CSLP. The underlying 
assumption of the PLSP is that the setup state of the 
machine can be changed at most once per period. 
Production in a period could take place only if the 
machine is properly setup either at the beginning or 
at the end of the period. Hence, at most two products 
may be produced per period. GLSP [9] integrates lot-
sizing and scheduling of several products on a single 
capacitated machine. Continuous lot sizes are 
determined and scheduled, thus generalizing models 
using restricted time structures. The single-item 
CLSP has been shown by Florian et al. [10] to be 
NP-hard. In consequence, Chen and Thizy [11] have 
shown that the multi-item CLSP problem is strongly 
NP-hard. Due to the vastness of the lot-sizing 
literature, this paper only focuses on multi-item 
single-level capacitated lot-sizing decisions with 
deterministic demand. 
  
The Problem Definition 
In the context of single-level production planning, 
with finite planning horizon and known dynamic 
demand without incurring backlogs, the capacitated 
lot-sizing problem (CLSP), consists of determining 
the amount and the timing of  production of the 
products in the planning horizon. Capacity 
restrictions constrain the production quantity in each 
period. A fixed setup cost is specified and there is 
also an inventory holding cost proportional to the 
inventory amount and time carried. In the CLSP, 
although the setup costs may vary for each product, 
they are sequence independent. A multi-item, multi-
echelon inventory problem with dynamic variables is 
extremely difficult to solve in a realistic time period, 
which leads to NP-hardness, quite similar to 
scheduling problem [12]. Several other mathematical 

models have been developed to solve these types of 
NP-hard inventory problem; those are 
computationally harder and thus require more time in 
information processing. Often, they become near NP-
hard problem, with global search options [13-15]. 
Hence, it appears highly unlikely that an efficient 
optimal algorithm will ever be developed. So the 
search for a good heuristic method is definitely 
warranted. The literature review indicates the 
existence of several efficient and effective problem 
formulations, heuristics for the CLSP, but the CLSP 
still poses many challenges for researchers. As a 
consequence, many heuristics were developed for 
this problem. Eisenhut’s procedure [16] could be 
called period-by-period heuristic. His procedure was 
later extended by many, including Dixon and Silver 
[17]. Basic assumptions of the Dixon-Silver model 
are: (i) the requirements for each product are known 
period by period, out to the end of some common 
time horizon. (ii) for each product there is a fixed 
setup cost incurred each time production takes place, 
(iii) unit production and holding costs are linear, (iv) 
the time required to setup the machine is negligible, 
(v) all costs and production rates can vary from 
product to product but not with respect to time, and 
(vi) in each period there is a finite amount of 
machine time available that can vary from period to 
period. The objective is to determine lot-sizes so that 
(i) costs are minimized, (ii) no backlogging occurs, 
and (iii) capacity is not exceeded. It would be more 
realistic for multi-item problem to assume a setup 
time since production changeover from one item to 
another item incurs setup time. This setup time is 
usually independent of the item sequence but 
different for each item. In Dixon-Silver heuristic, 
setup time has been neglected. But for a multi-item 
problem, consideration of the setup time would be 
more realistic. The current research work has thus 
been directed toward an extension of the Dixon-
Silver model considering the above mentioned 
situation. Based on the extended model, a program 
has been executed with the data of a hypothetical 
problem and feasible solutions have been obtained. 
Mathematically the model may be presented as 
follows.  

 
Mathematical Model 
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where N = the number of items, H = the time horizon, 
Dij = the given demand for item i in period j, Iij = the 
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inventory of item i at the end of period j (after period j 
production and demand satisfied), xij = the lot-size of 
item i in period j, Si = the setup cost for item i, hi = the 
unit holding cost for item i, ki = the capacity absorption 
rate for item i, Cj = the capacity in period j, Sti = setup 
time for item i, and 
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)( ijxδ is a binary setup variable indicating whether a 

setup cost must be incurred for item i in period 
j or not. 

 

The unit production cost is assumed to be constant 
for each item. Therefore, the total production cost 
(excluding setup costs) will be a constant and hence 
is not included in the model. If initial inventory 
exists, or if positive ending inventory is desired, then 
the net requirements should be determined. That is, 
use the initial inventory to satisfy as much demand as 
possible in the first few periods. The net 
requirements, will be that demand not satisfied by the 
initial inventory. Hence, an equivalent problem is 
created with zero starting inventories. Now increase 
the demand in the last period, H, by the desired 
ending inventory. Now the equivalent problem 
satisfies the starting and ending inventory 
constraints. 
 
 
STEPS OF THE HEURISTIC 
This paper extends the basic Dixon-Silver heuristic 
to accommodate setup time. The purpose of this 
section is to outline the steps of the proposed 
heuristic. The original multi-item problem with 
constant capacity is NP-hard. In the present work a 
new constraint, setup time is considered. With this 
new constraint the problem is also NP-hard. 
Therefore, a heuristic has been developed which 
guarantees a feasible solution. The heuristic method 
of solution is presented below in steps. 
 
Step 1  Creation of an equivalent demand matrix: 
• Convert the initial demand matrix into equivalent 

demand matrix with the use of initial inventory, 
ending inventory and safety stock. 

• Use the initial inventory to satisfy as much demand 
as possible in the first few periods. The net 
requirements will be that demand not satisfied by 
the initial inventory. During the calculation of the 
net demands, the amount of the safety stock should 
be maintained. Let 

Iini    = initial inventory for item i, 
Iendi = ending inventory for item i,  
Iremi= remaining initial inventory for item i, and 
SSi    = safety stock for item i. 
dij  = equivalent demand for product i in period j. 

Initially set  Iremi = Iini - SSi and period  j = 1.  

Then set .
0
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Compute Iremi = Iremi - Dij. 
Set j = j +1 and recycle till Iremi > 0. 

• Since the amount of the safety stock is always 
maintained, the demand in the last period H would 
be partially satisfied by the safety stock of the 
period H-1. If ending inventory is desired, then the 
requirements in period H should be increased by 
the desired ending inventory. Then 

diH = DiH + Iendi – SSi. 
• Compute the net demands for all i = 1, 2,…, N. 

Step 2  Check the feasibility of the problem: 

j
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CRj = demand in terms of capacity unit for period j, 
and ki = capacity absorption rate for product i. 

If the feasibility condition is not satisfied, the 
problem is infeasible i.e. all demands cannot be met 
with the available capacity. 

Step 3 Use the Dixon-Silver heuristic with inclusion 
of setup time [through steps 3.1 to 3.12]: 
Step 3.1 
• Start at period 1, i.e. set R=1 [R = 1, 2, …, H]. 

When lot-sizing of period 1 is complete, then lot-
sizing is started for period 2 up to period H.  

Step 3.2 
• Initialize lot-size ijx by equalizing to demand ijd , i.e., 

ijij dx =   i = 1, 2, …, N  and  j = 1, 2, …, H. 
Step 3.3 
• Initially set the value of the time supply to one i.e., 

Ti = 1, where i = 1, 2,…, N. 
Time supply (Ti) denotes the integer number of 
period requirements that this lot will exactly 
satisfy. 

Step 3.4 
• Produce diR > 0, in the lot-sizing period R, where i 

= 1, 2, …, N. 
• After producing diR calculate remaining capacity in 

period R, denoted by RCR, by 

iR

N

i
iRR dkCRC ∑

=
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1
. 

• Let '
ijI  be the amount of inventory at the end of 

period j for item i, resulting from only the 
currently scheduled production in period R. 
Initialize '

ijI  with zero, i.e.,  
I’

ij = 0, i = 1, 2, …, N  and  j = 1, 2, …, H. 
Step 3.5 
• Let APj be the amount of inventory (in capacity 

units) resulted from the production of period R that 
will be used in period j. Then 
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• Determine the earliest period tc at which the above 
feasibility constraint is not satisfied, i.e., 
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To remove infeasibility upto tc, extra amount is to 
be produced with the use of remaining capacity 
RCR of period R. 
If there is no infeasibility, set tc = H + 1. 

Step 3.6 
• Consider only items i' which have 
 (1)  ci tT <' , 
 (2)  RCR is sufficient to produce 

',' iTRid + , and  
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To decide the best item (from a cost standpoint) to 
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Among these find the one, denoted by i, that has 
the largest Ui. 

• Ui is the marginal decrease in average costs per 
unit of capacity absorbed. 

• AC(Ti) is average cost per unit time of a lot of item 
i which will satisfy Ti periods' requirements. This 
is from the Silver-Meal model in which future 
setup cost may be saved at the expense of added 
inventory holding cost. 

Step 3.7 
• Check the value of Ui.  

(a) If Ui > 0, then it is economic to produce 

iTRid +, in period R. 

Increase the value of lot-size iRx and inventory I’
ij 

by 
iTRid +, , i.e., 

iTRiiRiR dxx ++= ,  

iTRiijij dII ++= ,
''  j = R+1, …, R+Ti. 

Decrease the value of lot-size 
iTRix +, , demand 

iTRid +, and remaining capacity RCR by 
iTRid +, , i.e., 

set 

iTRix +, = 
iTRix +, - 

iTRid +,  

iTRid +, =
iTRid +, - 

iTRid +, = 0 

RCR = RCR - 
iTRid +, . 

• Set  Ti = Ti + 1 and continue from Step 3.5. 
(b)  If Ui ≤  0, then it is not economic to increase Ti 

of any item, because of the increase of the total 
cost. 

• Check the value of tc. 
(i) If tc > H, then no infeasibilities left and lot-
sizing of the current period is complete. Go to 
Step 3.12. 
(ii) If tc < H, there are infeasibilities and 
production of one or more item is to be increased 
and it is done through Steps 3.8 to 3.11. 

Step 3.8 
• Calculate the value of Q, where  
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• Q is the amount of production still needed in the 
current period to eliminate infeasibilities in the 
later period because the available capacity is not 
sufficient to meet the demands of those periods. 

Step 3.9 
• Consider only items i’ for which  
 i.   ci tT <' , and 

 ii. 0
',' >+ iTRid . 

To decide the best item (from a cost standpoint) to 
be produced in period R, calculate the priority 
index 'iΔ  for all of these items, where 
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• Find the one, denoted by i, that has the smallest 
iΔ . 

Step 3.10  
• Let 

iTRiidkW += , .  

• Compare the value of Q with W.  
(a) If Q > W,  

Increase the value of lot-size iRx , and inventory 
I’

ij by 
iTRid +, , i.e.,  

iTRiiRiR dxx ++= ,  

iTRiijij dII ++= ,
''  j = R+1, …, R+Ti. 

Decrease the value of lot-size 
iTRix +, , demand 

iTRid +, and remaining capacity RCR by 
iTRid +, , i.e.,  

iTRix +, = 
iTRix +, - 

iTRid +,  

−= ++ ii TRiTRi dd ,, iTRid +, = 0 
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RCR = RCR - 
iTRid +, . 

    Set Q = Q – W and Ti = Ti + 1. 
Continue from Step 3.9. 

(b) If ,WQ ≤  set IQ = ⎥
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Increase the value of lot-size iRx and inventory 
I’

ij by IQ, i.e., 
IQxx iRiR +=  

IQII ijij += '' . 

Decrease the value of lot-size 
iTRix +, and 

demand 
iTRid +, by IQ, i.e., 

iTRix +, = 
iTRix +, - IQ 

IQdd
ii TRiTRi −= ++ ,, .  

Step 3.11 
• Set  R = R + 1. 
• Check the value of R. 

(a) If R < H, then continue from Step 3.3. 
(b) If R > H, lot-sizing is complete up to period H. 

Step 3.12 
• Calculate the values of 

i.    Forecasted machine time required/period. 
ii.  Total expected setup cost. 
iii. Total expected  inventory holding cost. 
iv. Total expected safety stock cost. 

• Stop.  
 
COMPUTATIONAL RESULTS 
The proposed heuristic has been implemented with 
bench-mark data as obtained from [17]. It is assumed 
that entire production to meet demands is done in the 
plant and no subcontracting is permissible. A further 
assumption is made that plant capacity could not be 
increased. 
Product Data 
In this problem, the machine setup time to produce 
each product item is included. Relevant product data 
(e.g., holding cost, setup cost, production rate, safety 
stock, initial inventory and ending inventory) 
including setup time for each item has been 
presented in Table 1. The problem size has been 
restricted to 12 products and 12 time periods; each 
time period corresponds to a month. 
 

Table 1. Relevant product data for the proposed heuristic with setup time. 
Item Holding Setup Setup Production Safety Initial Ending 
No Cost Cost Time Rate Stock Inventory Inventory 
(i) (hi) (Si) (Sti) (1/ki) (SSi) (Iini) (Iendi) 
01 0.0167 322.0 1.40 524 0 19320 18893 
02 0.0167 81.0 2.00 349 10602 200180 124225 
03 0.0167 124.0 1.00 245 4577 24460 43294 
04 0.0167 124.0 1.50 172 1974 23260 21757 
05 0.0167 81.0 0.25 349 7581 55489 92168 
06 0.0167 124.0 0.70 245 4861 -2727 44394 
07 0.0167 124.0 0.50 172 2026 9659 8466 
08 0.0167 105.0 1.20 847 11117 29705 40273 
09 0.0167 105.0 0.40 464 9533 11362 84717 
10 0.0167 106.0 0.60 575 20417 242944 227344 
11 0.0167 105.0 1.00 1261 16634 324215 271627 
12 0.0167 105.0 1.30 663 9794 45439 69068 

 
Table 2. Forecasted demand and capacity of the machine. 

Period Item No 
1 2 3 4 5 6 7 8 9 10 11 12 

01 11456 11456 10501 13365 13365 11456 8592 1909 1909 1909 4773   4773
02 53124 53124 48697 61977 61977 53124 39842 8854 8854 8854 22135  22135
03 18099 18099 16591 21116 21116 18099 13574 3016 3016 3016 7541    7541
04 9250 9250 8480 10792 10792 9250 6938 1542 1542 1542 3854   3854
05 39546 39546 36250 46137 46137 39546 29659 6591 6591 6591 16478 16478
06 18363 18363 16833 21423 21423 18363 13772 3060 3060 3060 7651   7651
07 4976 4976 4562 5806 5806 4976 3732 829 829 829 2074   2074
08 41690 41690 38216 48638 48638 41690 31267 6948 6948 6948 17371  17371
09 32816 32816 30081 38285 38285 32816 24612 5469 5469 5469 13673 13673
10 96745 96745 88683 112868 112868 96745 72559 16124 16124 16124 40310 40310
11 119220 119220 109285 139088 139088 119220 89415 19870 19870 19870 49675 49675
12 27715 27715 25405 32333 32333 27715 20786 4619 4619 4619 11548 11548

 Available Machine Hours 
 706 729 729 706 729 706 729 729 660 729 706 729 
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Product Demand Plant Capacity 
Product demands are quite seasonal and the same 
seasonal indices are used for all the products. 
Forecasted demand and the capacity of the machine 
are shown in Table 2. It has been assumed that the 
capacity per month is the total number of hours 
available per month. It is assumed that 2% of the 
capacity is reserved as a buffer to guard against 
uncertainty in the actual production rate. In this 
problem, Period 1 corresponds to the month of June, 
Period 2 corresponds to the month of July. Thus the 
machine capacity in Period 1 is 98% of the total 
hours in June, i.e., 30 × 24 × 0.98 = 706 hours. To be 
in the safe side, it has been assumed that the number 

of days in February is 28. Then the machine capacity 
in Period 9 is 28 × 24 × 0.98 = 660 hours. Similarly 
the machine capacity for the other periods has been 
calculated. 
 
Equivalent Demand Schedule 
An equivalent demand schedule is generated such 
that starting and ending inventory are 
accommodated. In addition, demands are adjusted 
such that in the heuristic solution, the inventory at 
the end of any period never drops below the safety 
stock level. Table 3 depicts the equivalent demand 
after considering initial inventory, ending inventory 
and safety stock. 

 
Table 3. Equivalent demand with the use of initial inventory, ending inventory and safety stock. 

  Period 
Item  No 1 2 3 4 5 6 7 8 9 10 11 12 

01 0 3592 10501 13365 13365 11456 8592 1909 1909 1909 4773  23666
02 0 0 0 27344 61977 53124 39842 8854 8854 8854 2135 135758
03 0 16315 16591 21116 21116 18099 13574 3016 3016 3016 7541  46258
04 0 0 5694 10792 10792 9250 6938 1542 1542 1542 3854  23637
05 0 31184 36250 46137 46137 39546 29659 6591 6591 6591 16478 101065
06 25951 18363 16833 21423 21423 18363 13772 3060 3060 3060 7651  47184
07 0 2319 4562 5806 5806 4976 3732 829 829 829 2074   8514 
08 23102 41690 38216 48638 48638 41690 31267 6948 6948 6948 7371  46527
09 30987 32816 30081 38285 38285 32816 24612 5469 5469 5469 13673  88857
10 0 0 59646 112868 112868 96745 72559 16124 16124 6124 0310 247237
11 0 0 40144 139088 139088 119220 89415 19870 19870 19870 9675 304668
12 0 19785 25405 32333 32333 27715 20786 4619 4619 4619 1548  70822

 
Table 4. Final lot-sizes and forecasted machine time requirements. 

Period Item  No 
1 2 3 4 5 6 7 8 9 10 11 12 

01 3592 23866 0 13365 11456 0 10501 3818 0 28439 0          0
02 0 0 27344 61977 0 53124 39842 17708 68079 0 98668          0
03 37814 0 16208 21116 18099 0 13574 9048 0 53799 0          0
04 0 27278 0 0 9250 0 6938 8480 0 0 23637          0
05 31184 82387 0 46137 0 39546 29659 13182 124134 0 0          0
06 61147 0 21423 21423 16899 1464 13772 9180 0 54835 0          0
07 18493 0 0 0 4976 0 4561 11912 0 0 334          0
08 23102 41690 41862 44992 48638 41690 31267 13896 6948 17371 0  46527
09 30987 62897 38285 11166 27119 32816 24612 10938 5469 45743 56787          0
10 0 14322 158192 0 112868 96745 72559 16124 32248 40310 64595 182642
11 0 0 40144 139088 139088 119220 89415 19870 19870 19870 49675 304668
12 0 45190 32333 0 32333 27715 20786 9238 4619 11548 0   70822

 Forecasted Machine Requirements (hours) 
 707.2 724.7 727.8 704.4 728.3 703.5 727.9 398.3 656.3 727.6 702.2     725.1

 
Table 5. Inventories at the end of each period for all items. 

Period 
Item  No 1 2 3 4 5 6 7 8 9 10 11 12 

01 11456 23866 13365 13365 11456 0 1909 3818 1909 28439 23666   18893
02 147056 93932 72579 72579 10602 10602 10602 19456 78681 69827 146360 124225
03 44175 26076 25693 25693 22676 4577 4577 10609 7593 58376 50835   43294
04 14010 32038 23558 12766 11224 1974 1974 8912 7370 5828 25611  21757
05 47127 89968 53718 53718 7581 7581 7581 14172 131715 125124 108646   92168
06 40057 21694 26284 26284 21760 4861 4861 10981 7921 59696 52045   44394
07 23176 18200 13638 7832 7002 2026 2855 13938 13109 12280 10540     8466
08 11117 11117 14763 11117 11117 11117 11117 18065 18065 28488 11117   40273
09 9533 39614 47818 20699 9533 9533 9533 15002 15002 55276 98390  84717
10 146199 63776 133285 20417 20417 20417 20417 20417 36541 60727 85012 227344
11 204995 85775 16634 16634 16634 16634 16634 16634 16634 16634 16634 271627
12 17724 35199 42127 9794 9794 9794 9794 14413 14413 21342 9794   69068
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Results 
Table 4 shows the final lot-sizes and forecasted 
machine hour requirements for each period, and 
Table 5 shows the inventories at the end of each 

period for all items as obtained by applying the 
proposed heuristic. Tables 6 and 7 show the results 
that have been found after applying the heuristics 
without setup time and with setup time, respectively. 

 
Table 6. Costs obtained by applying Dixon-Silver heuristic. 

Total available machine time (∑=

H

t tC
1

) : 8587.0 hour 

Total forecasted machine time : 8139.8 hour 

Total inventory-holding cost, Cinv = )(1 1∑ ∑= = −N
i

H
t iit SSI  : Tk. 64674.05 

Total expected safety-stock cost, Css = ∑ =
N
i iSS1  : Tk. 19862.85 

Total expected setup cost, Cset = i
N
i iSn∑ =1  : Tk. 11959.00 

     where in is the number of setups for item i. 

Total expected cost (Cinv + Css + Cset)  : Tk. 96495.90 
 

         
Table 7. Costs obtained by applying the proposed heuristic. 

Total available machine time (∑ =
H
t tC1 ) : 8587.0 hour 

Total setup time ( i
N
i iStn∑ =1 ) : 93.5 hour 

      where in is the number of setup for item i. 
Total forecasted machine time : 8233.2 hour 

Total inventory-holding cost, Cinv = )(1 1∑ ∑= = −N
i

H
t iit SSI  : Tk. 65896.46 

Total expected safety-stock cost, Css = ∑ =
N
i iSS1  : Tk. 19862.85 

Total expected setup cost, Cset = i
N
i iSn∑ =1  : Tk. 11853.00 

Total expected cost (Cinv + Css + Cset) : Tk. 97612.31 
 
Effect of Setup Time on Different Parameters 
In Table 1, the setup time for each item of the 
hypothetical problem has been chosen so that any 
increase in this time will make the problem 
infeasible. To see the effect of setup time on different 
parameters, the value of setup time of each item of 
Table 1 has been varied step by step at a 5% interval. 
With these variations the changes of the machine 
utilization time, total inventory cost, and total cost 
have been determined and shown in Figure 1, Figure 

2 and Figure 3. The setup time 0% indicates that 
there is no setup time for each item. This is same as 
the Dixon-Silver’s original algorithm. 

Figure 1 shows the machine utilization time for 
various percentage of the setup time.  This time 
increases linearly with the setup time. The increase in 
setup time increases the time to produce an item. 
This increase in production time results an increase 
in the machine utilization time. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Variation of machine utilization time with setup time. 
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Figure 2 shows the variation of inventory holding 
cost with setup time. With the increase of setup time, 
inventory holding cost increases gradually. Since the 
increase of setup time decreases the available 
capacity in a period, there could be periods in which 
total demand exceeds total capacity. To overcome 

this unbalance situation some inventory will have to 
be built up in earlier periods with available slack 
capacity. When setup time increases, number of 
capacity violating period would increase. Thus the 
inventory will be more. As a result inventory holding 
cost increases with the increase of setup time. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Variation of inventory holding cost with setup time. 
 
Figure 3 shows the variation of total cost with setup time. With the increase of setup time, total cost increases, 
since the inventory holding cost increases, and the setup cost and safety stock cost remain almost unchanged. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Variation of total cost with setup time. 
 
CONCLUSION 

Due to their importance in industry, deterministic 
and dynamic demand lot-sizing problems are 
frequently studied. Researchers typically develop 
specialized formulations and solution procedures for 
each particular lot-sizing problem class. However, 
The CLSP provides a comprehensive modeling 
framework for single and multiple items, coordinated 
and uncoordinated scheduling, and capacitated and 
uncapacitated problem variants. This paper extends 
Dixon-Silver heuristic with setup time which is very 
important from practical point of view, especially 
when the problem is multi-item and capacitated. The 

proposed heuristic has given feasible solutions for 
bench-mark data. 
Other promising research areas are available. While 
genetic algorithms, tabu search and capacitated 
network flow models are successfully applied to 
solve other lot-size problems, their potential to solve 
CLSP is unknown. Research examining sensitivity 
analysis of dynamic lot-sizing heuristics with other 
parameters of CLSP is also worthwhile. The 
applicability of these problems arises commonly in 
operations in industries which consist of a single 
production process, or where all production process 
can be considered as a single operation, such as some 
medical or chemical industries. 
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