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Abstract: This paper presents an exact mathematical model for the postbuckling of a uniformly heated slender rod with 
axially immovable simply supported ends on the basis of geometrically nonlinear theory of extensible rods. The material is 
assumed linear elastic and its thermal strain-temperature relationship is considered nonlinear. Two approaches have been 
used in this study. The first approach is based on the extensible elastica theory. The governing equations are derived and 
solved analytically for the exact closed form solutions that include the equilibrium configurations of the rod, equilibrium 
paths, and temperature gradients. The exact solutions take the form of elliptic integrals of the first and second kinds. In the 
second approach, the multisegment integration technique is employed to solve a set of nonlinear differential equations with 
the associated boundary conditions. The equations are integrated by using the Runge-Kutta algorithm. A comparison study 
between the analytical elliptic integral solutions and the numerical multisegment integration technique solutions show 
excellent agreement of results. Special features of the solutions in the form of determination of buckling temperature, effects 
of slenderness ratio and nonlinear strain-temperature coefficients on the buckling and postbuckling behavior as a function 
of temperature are also discussed extensively.  
 
Keywords: Thermal postbuckling, elliptic integral, multisegment integration, critical buckling temperature. 
 
INTRODUCTION 

In many practical cases, the postbuckling of slender 
components needs to be considered for design purposes, 
such as in mechanical systems (robotic arms, optical fibers, 
and satellite tethers) or when a component is subjected to 
thermal loads (railroad tracks, concrete road pavements, 
and pipelines). It is often possible to associate the buckling 
of slender components with the buckling of a simple 
slender rod. However, the problem of elastic stability of 
rods subjected to thermal loads and mechanical 
compressive loads is substantially different and in fact not 
as many articles have been published regarding thermal 
buckling of rods. Compared with the study for the 
postbuckling of the rods subjected to mechanical loads, 
little was found in a search of literature on the thermal 
postbuckling of rods or beams. 

The discussion on linear problems of thermal elastic 
stability for straight rods can be found in literature1,2. 
Based on the simplified geometric and equilibrium 
equations, the solution with elliptic integral form for 
thermally expansive buckling of simply supported rods was 
obtained by Jankang and Rupeng3. Jekot4 examined the 
thermal postbuckling of a beam made of physically 
nonlinear thermo-elastic material. The range for safe 
buckling temperature was determined and some 
comparisons between the nonlinear and linear postbuckling 
behaviors were discussed. However, the geometric 
nonlinearity due to the central axis curvature was not 
considered and a simplified form of the nonlinear axial 
strain was used. Coffin and Bloom5 gave an elliptic 
integral solution for the symmetric postbuckling response 
of a linear-elastic and hygrothermal beam with two ends 
pinned. They assumed a linear  thermal  strain–temperature 
_______________________________________________ 
Nomenclature 
 

A Cross-sectional area of the rod 
E Young’s modulus of elasticity 
I Cross-sectional second moment of inertia 

k Curvature of the deformed curve 
K Dimensionless curvature of the deformed curve 
L Undeformed length of the rod 
L* Deformed length of the rod 
Lo Material nonlinearity constant with temperature 
L  Nondimensional deformed length of the rod 
l,m,n Murnaghan’s constants 
M Internal bending moment 
N Axial internal force 
p Dimensionless axial compressive force  
P Axial compressive force due to expansion 
s Arc length of deflection curve 
S Dimensionless arc length of deflection curve 
ΔT Uniform temperature rise 
u, w Displacement along x- and y- direction 
U,W Nondimensional displacement  
x, y Orthogonal coordinate system 
X, Y Curvilinear coordinate system 

YX ,  Nondimensional curvilinear coordinate system 
Greek symbols 
α Coefficient of thermal expansion 
μ Stretch ratio of axial line 
θ Rotation angle of the cross-section 
ε Strain along central axis 
υ Poisson’s ratio 
ξ Nondimensional undeformed neutral axis 
τ Nondimensional temperature 
γ Nonlinear thermal strain coefficient 
λ Rod slenderness ratio 
β Rotation angle of the end cross-section 
σ Stress state in the rod 
π Constant pi number 

Subscript 
c Compressive 
cr Critical 
max Maximum 
T Thermal 

_______________________________________________ 
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relationship and solved the set of differential equations for 
the undeformed configuration; hence, two coupled integral 
elliptic equations needed to be simultaneously solved. 
Based on the exact nonlinear geometric theory of an 
extensible rod and using a shooting method, a 
computational analysis for the thermal postbuckling 
behavior of rods with axially immovable pinned-pinned 
ends as well as fixed-fixed ends was given by Li and 
Cheng6. More recently, Li et al.7 presented a mathematical 
model for the postbuckling of an elastic rod with pinned–
fixed ends when a quasi-static increasing temperature was 
applied. Using the shooting method in conjunction with the 
concept of analytical continuation, the nonlinear boundary 
value problem consisting of ordinary differential equations 
was numerically solved. The results showed that the 
critical buckling temperature and the postbuckled rod 
configuration were sensitively influenced by the 
slenderness ratio. 

Cisternas and Holmes8 included thermal expansion 
effects in the extensible rod theory, focusing their study on 
the bifurcations of the resulting equilibrium equations 
under both traction and displacement boundary conditions 
and determined sub-critical and supercritical pitchfork 
bifurcations. Finally, Vaz and Solano9,10 developed a 
closed-form analytical solution via uncoupled elliptical 
integrals for the postbuckling analysis of slender elastic 
rods subjected to uniform thermal loads with non-movable 
hinged ends9 and with non-movable hinged at one end and 
at the other end constrained by a linear spring10. The 
thermal strain–temperature relationship was considered 
nonlinear and the material was assumed to be linearly 
elastic, homogeneous, and isotropic. Most recently, Zhao et 
al.11 explained the characteristics of thermal postbuckling 
equilibrium paths of the FGM rod with different gradient 
index in the uniform temperature field. Analysis of thermal 
postbuckling behaviors of FGM rod was made by using 
shooting method. 

Thermal post-buckling of uniformly heated axially 
extensible elastic rods with both ends hinged or pinned is 
discussed in this work. Material of the slender rod is 
considered linear elastic and its strain–temperature 
relationship may be considered nonlinear. First, through 
introducing basic unknown function s(x), the arc length of 
the deformed axial line of the rod, an exact mathematical 
model of the problem are established on the basis of the 
nonlinear geometric theory for an extensible rod. The 
analytical solution is obtained by uncoupled elliptic 
integrals, which are derived from the governing equations 
in the deformed configuration, hence completely defining 
the shape of the rod. This study may be qualitatively 

expanded to pipes and other slender structures such as 
beams subjected to thermal loads. Also, by using multi-
segment integration technique, the nonlinear system of 
ordinary differential equations with two-point boundary 
values are solved numerically. The corresponding 
secondary equilibrium paths and the post-buckled 
configurations have been presented. 
 
DEFINITION OF THE PROBLEM 

Let us consider a uniformly heated slender rod of 
initial undeformed length L, made of physically linear 
elastic material, and with the Young’s modulus E and a 
coefficient of thermal expansion α. Assume that the end 
support conditions are immovably simply supported, that 
is, the rod is pinned at both ends so that the axial 
movements of the two ends are prohibited. A uniform 
temperature increase ΔT is applied to the rod from its 
natural state. When the temperature is increased, the rod 
will tend to expand; however, the constraints at the ends 
completely restrain its axial expansion. Initially, the rod 
remains in its undeformed straight state; at the same time 
an axial compressive force develops. If the temperature rise 
is cover the critical value, the undeformed state becomes 
unstable and a buckling deformation takes place. Our main 
purpose is to seek the post-buckling response of the rod. 
For convenience in formulating the buckling deformation, 
we assume that Kirchhoff’s hypothesis (the cross sections 
remain plane and are perpendicular to the deformed central 
axis) holds and that the cross-sectional area remains 
constant during the deformation. 

As is shown in Figure 1, we choose Cartesian 
orthogonal coordinate systems (x, y) and (X, Y) to position 
the points at the material and the deformed configurations 
of the central axis of the rod, respectively, where x 
coincides with the nonstressed central axis. Here P is the 
compressive load arising from the expansion constraint and 
L* is the deformed rod length.  

An arbitrary material point of the central axis is 
denoted by A: (x, y) = (x, 0) where 0 ≤ x ≤ L. When the 
rod is buckled, the point A moves to point B: (X, Y) = (x + 
u, w), in which u(x) and w(x) are the displacements of the 
point A(x, 0) along x and y direction respectively. Here, we 
presume that the deformed central axis of the rod is still in 
x-y plane and is symmetric about the middle point of the 
rod. On the basis of nonlinear geometric theory5-7 for an 
axial extensible rod with large deflections, an exact 
mathematical model of the problem are derived from the 
geometrical compatibility, equilibrium of forces and 
moments, constitutive equations, and strain-displacement 
relation, which are presented next. 

 
Figure 1. Schematic of Rod Element with Coordinates Axis 
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Figure 2. Infinitesimal Element of the Deflected Rod 
 
MATHEMATICAL MODEL 
Geometrical Compatibility: 

By analyzing the geometric relationship of the 
deformation of element dx into element ds as shown in 
Figure 2, it is easy to derive the geometric relations, 

θ= cos
ds
dX       θ= sin

ds
dY  (1)

μ=
dx
ds        1cos

dx
du

−θμ=        θμ= sin
dx
dw  (2)

in which s(x) is the arc length of the deformed central axis 
(0 ≤ s ≤ L*), μ(x) is called the stretching of the central axis 
and can be expressed in terms of u(x) and w(x) by 

22

dx
dw

dx
du1 ⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ +=μ  (3)

and θ(x) is the angle formed by the curve tangent with the 
longitudinal X-axis, also called the rotation angle of the 
cross-section. 
The strain ε(x) along the central axis is defined as,  

1
dx

dxds
−μ=

−
=ε  (4)

The general definition of the curvature k is  

dx
d1

ds
dk θ

μ
=

θ
=  (5)

Constitutive Relations: 
Assuming linear elastic, homogeneous and isotropic 

materials (constitutive relations given by Hooke’s law), 
and considering the state of pure bending, results in 

∫∫ ε=σ=
A

cEAdAN  (6)

∫∫ −=
θ

−=σ=
A

EIk
ds
dEIydAM  (7)

where ∫∫=
A

2dAyI  is the moment of inertia about the 

neutral axis and A is the cross-sectional area of the rod. 
Equilibrium of Forces and Moments: 

In the post-buckled state, the rod is assumed to be in 
static equilibrium. A schematic of the internal forces and 
moments in the deformed infinitesimal element of the rod 
is presented in Figure 2. The global equilibrium equations 
can be derived by considering the part of length s(x) of the 
deformed rod. The sum of the projections of the forces in 
the normal of the cross-section yields 

0cospN =θ+  (8)
where N(x) is the axial internal force. Again equilibrium of 
forces in the X-direction (∑FX = 0) results in a constant 
compressive load P along the rod. Therefore,  

0
dx
dP

ds
dP

==  (9)

Note that for double-hinged ends there is no component of 
reaction forces in the Y-axis. The equilibrium of moments 
at B΄ (∑MB΄ = 0), for instance, yields 

θ= sinp
ds

dM  (10)

or, 0PwM =+−  (11)
where M(x) is the internal bending moment. Therefore, 
substituting Eq. (7) into Eq. (10) results in the following:  

θ−= sin
EI
P

ds
dk  (12)

Strain-Displacement Relation: 
For an infinitesimal element, the specific linear strain 

ε (or relative elongation) is defined as being the relation 
between the elongations suffered by the element, when 
passing to the deformed configuration and its initial length:  

ε+
=

1
1

ds
dx  (13)

When a slender rod is subjected to a temperature 
gradient ΔT, it tends to expand and consequently, a 
compressive load P appears if movement of the ends is 
restricted. Hence, the total strain is given by the addition of 
the thermal strain and the strain due to the compressive 
load (ε = εT + εC):  

⎟
⎠

⎞
⎜
⎝

⎛ Δα−Δα−ε= 22o T
E
LTEAN  (14)

θ−Δα+Δα=ε cos
EA
PT

E
LT 22o  (15)

where α is the thermal expansion coefficient,  
( ) ( ) 22

o n1m221lL υ+−υ−υ−=  (16)
l, m, n are Murnaghan’s constants; and υ is Poisson’s ratio. 
The first two terms on the right-hand side of Eq. (15) 
define the thermal strain for materials whose strain-
temperature dependence is nonlinear, as proposed by 
Smith12. Note that, for metals, oL may only assume 
negative values. Substituting Eq. (15) into Eq. (13), and 
rearranging, yields 

θ−Δα+Δα+
=

cos
EA
PT

E
LT1

1
ds
dx

22o
 

(17)

From Eqs. (4), (5), (7), (11) and (15) we get the following 
equations,  

θ−Δα+Δα+=μ cos
EA
PT

E
L

T1 22o  (18)

Pw
EIdx

d μ
−=

θ  (19)

 
NON-DIMENSIONAL GOVERNING EQAUTIONS 

Upon introducing the following dimensionless 
quantities: 

L
x

=ξ  
L
XX =  ⎟

⎠
⎞

⎜
⎝
⎛=λ

I
AL22  

L
sS =  

L
YY =  

EI
PLp

2
=  

L
uU =  kLK =  T2 Δαλ=τ  

L
wW =  

L
LL

*
=  

E
Lo=γ  

(20)

ds 

dX 

dY = dw 

X 

Y 

M + dM 
P + dP 
θ + dθ 

dx u + du 

θ 

B΄ 

B 
M 

P 

w 

u 

A A΄ 
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The governing equations are transformed into the non-
dimensional forms, 

θ= cos
dS
Xd     θ= sin

dS
Yd  (21)

μ=
ξd

dS           1cos
d
dU

−θμ=
ξ

     θμ=
ξ

sin
d
dW  (22)

pW
d
d

μ−=
ξ
θ    K

dS
d

=
θ                   θ−= sinp

dS
dK  (23)

0
d
d

d
dp

=
ξ
τ

=
ξ

   (24)

ε+
=

μ
=

ξ
1

11
dS
d  (25)

where,  

θ
λ

−
λ
τ

+
λ
τ

γ=ε cosp
224

2
 (26)

( )
24

2 cosp1
λ

τ+θ−
+

λ
τ

γ+=μ  (27)

The constant λ is the rod slenderness ratio and γ is the 
nonlinear thermal strain coefficient. By using the 
symmetry of the post-buckled configuration of the rod, it is 
enough to consider ξ ∈ [0, 1/2]. Then we have considered 
the following boundary conditions for numerical solutions,  
( ) ( ) ( ) ( ) ( ) ( ) 02/12/1U00W0U0S =θ==β−θ=== (28)

where β is the rotation angle of the end cross-section of the 
simply supported (hinged or pinned) ends. 
 
CRITICAL BUCKLING TEMPERATURE 

The determination of the critical buckling load is 
found by applying the equilibrium equations to the rod 
element in an infinitesimal slightly deformed 
configuration. Because the rotation θ is assumed small 
compared to unity, cosθ ≈ 1 and sinθ ≈ θ. So, the governing 
equation may be reduced to,  

0
Xd
Ydp

Xd
Yd

2

2

4

4
=+  (29)

The general solution for the homogeneous differential 
equation (29) with constant coefficients is quickly found:  

( ) ( ) 4321 CXCXpcosCXpsinCY +++=  (30)
The boundary conditions in dimensionless forms for the 
solution of the above equations are as follows:  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0LKLYLY1LX

00K0Y0Y0X
==′′==−

==′′==
 (31)

Application of boundary conditions for rods with double-
hinged ends yields 

( ) 0psinCCCC 1432 ====  
and to avoid trivial solution, C1 must be different from 
zero, which can be satisfied if 

( ) 0psin =  and π= np  
where n is a positive integer. The smallest eigen value in 
this case corresponds to n = 1, that is, the first buckling 
mode corresponds to 

2
crp π=  (32)

subjected to a uniform temperature increase, the rod tends 
to expand, but until it reaches the critical buckling load, its 
strain is zero (ε = 0); hence, from Eq. (26)  

0p2

2
=−τ+

λ
τ

γ  (33)

Equation (32) can be substituted in Eq. (33) to find the 
critical buckling temperature 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

λ
γπ

++−
γ
λ

=τ 2

22

cr
411

2
 (34)

Equation (34) indicates that two parameters control the 
critical buckling temperature; the rod slenderness ratio λ 
and the nonlinear strain coefficient γ. In case of linear 
strain-temperature relationship (i.e. γ = 0), the critical 
temperature equals to the value of critical compressive 
load,  

2
crcr p π==τ  (35)

The physical and geometrical rod properties should be 
carefully selected to ensure practical and real meaning of 
the analysis, as well as to avoid nonconformity with the 
assumptions from the mathematical formulation. 
Therefore, high temperatures and strains above 3% should 
not be considered. Furthermore, the parametric study was 
conducted for rod slenderness ratios λ = 50, 100, 150 and 
200, and nonlinear thermal strain coefficient γ = –5 and 0. 
The critical buckling temperature with the variation of the 
rod slenderness ratios, considering linear (γ = 0) and 
nonlinear (γ = –5) strain-temperature relationships, are 
presented in Figure 3. 
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Figure 3. Critical Temperature as a Function of 

Slenderness Ratio 
 
ANALYTICAL POSTBUCKLING SOLUTION 

A closed-form analytical solution for the thermal 
postbuckling of a slender elastic rod uniformly heated is 
developed next via complete elliptical integrals derived 
from the governing equations in the deformed 
configuration, following similar work developed by Vaz 
and Solano9,10. The material is assumed linearly elastic and 
its thermal-strain temperature relationship is nonlinear. 
Furthermore, the boundary conditions are assumed hinged-
hinged with non-movable ends. It is more convenient to 
work with the slope angle θ, so the non-dimensional 
differential equations (23) yield 

θ−=
θ sinp

dS
d

2

2
 (36)

It so happens that this nonlinear equation can be easily 
solved by employing elliptic integrals. The solution was 
given in 1859 by Kirchhoff, who noticed that it is 
mathematically identical to the equation that describes 
large pendulum oscillations, which had been earlier solved 
by Lagrange (a kinetic analogy of columns). Integrating 
Eq. (36) and applying the boundary conditions at the ends 
of the rod yield  
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Bcosp
dS
d

2
1 2

+θ=⎟
⎠
⎞

⎜
⎝
⎛ θ  (37)

where B = –pcosβ and θ(0) = –θ( L ) = β. Hence,  

)cos(cosp2
dS
d

β−θ=
θ  (38)

After returning to familiar trigonometric identities to 
rewrite Eq. (38), separating and changing variables, 

ϕ=ϕ
β

=
θ sincsin

2
sin

2
sin  

where, 
2

sinc β
=  

and after some algebraic manipulation followed by an 
integration, the deformed rod length is found:  

∫
π

ϕ−

ϕ
=

2/

0
22 sinc1

d
p

2L  (39)

The integral appearing in Eq. (39) is known as a complete 
elliptic integral of the first kind and is dependent only on c. 
The x- and y-coordinates for the slender rod deflected 
configuration may be obtained from the non-dimensional 
Eqs. (21):  

ϕ
ϕ−

ϕ−
= ∫

π

ϕ

d
sinc1

sinc21
p

1X
2/

22

22

0

 (40a)

0cos
p
c2Y ϕ=  (40b)

where, –π/2 ≤ φ0 ≤ π/2 and the integral in Eq. (40a) is the 
complete elliptic integral of the second kind. 
Since Ypk −= , the rod curvature k at the deformed 
configuration may now be readily obtained:  

0cos2
ϕ−=

p
pck  (41)

Symmetry implies that the point of maximum displacement 
occurs for 2/1)2/L(X = , so one may calculate p for this 
condition as a simple application of Eq. (40a):  

2
2/

0
22

22
d

sinc1

sinc212p
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
ϕ

ϕ−

ϕ−
= ∫

π

 (42)

Therefore, for each deformed configuration (which is 
related to a temperature gradient), that is, for a given slope 
β, c = sin (β/2) is calculated and, consequently, p from Eq. 
(42). Finally, it is possible to find the coordinates ( )Y,X  
and curvature k along the rod from Eqs. (40a), (40b) and 
(41). 
The temperature gradient associated with the deformed 
configuration may be obtained by considering Eq. (26). 
Thus,  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

λ
γ

++−
γ
λ

=τ 2
o

2 A411
2

 (43)

where 

( ) ( )
ϕ

ϕ−

ϕ−
+−λ= ∫

π

d
sinc1

sinc21p21LA
2/

0
22

222
2

o  (44)

Equation (44) also corresponds to the non-dimensional 
temperature based on linear strain-temperature relationship 
(γ = 0). This expression may be readily evaluated once p 
and L are known. 

MULTISEGMENT INTEGRATION TECHNIQUE 
It is very cumbersome to obtain analytical solutions to 

the nonlinear boundary value problems. For the symmetric 
buckling response of a uniformly heated rod, an elliptical 
integral solution is possible, but due to the limit of the 
elliptical integral to the boundary conditions, only the case 
of pinned-pinned ends is considered. So, we also apply a 
multisegment integration technique to seek numerical 
solutions of the problem, which can be further extended for 
the solution of thermal postbuckling of rods with fixed-
fixed and pinned-fixed ends. 

The fundamental set of nonlinear equations (22-24) 
together with the boundary conditions (28) has to be 
integrated over a finite range of the independent variable ξ. 
It is not difficult to see that it is a two-point boundary value 
problem with strong nonlinearity, which contains four 
basic unknown functions S(ξ), U(ξ), W(ξ), θ(ξ ) and two 
unknown load parameters τ and p. We take constant β as 
the control parameter of the thermal post-buckled 
configurations of the rods with the simply supported 
boundary condition. Eqs. (22) and (24) may be regarded as 
exact mathematical model of the problem under 
Kirchhoff’s hypothesis. For a prescribed value of β, a 
thermal buckled configuration can be determined. Thus, 
the nonlinear governing equations of thermal postbuckling 
problem have been solved here by using the method of 
multisegment integration developed by Kalnins and 
Lestingi13. The solution is implemented through a 
computational program developed in the mathematical 
software Mathematica and Mathcad. 

For the sake of convenience, the differential equations 
(22-24) are represented here in matrix notation as follows: 
df/dξ = F(ξ, f1, f2, f3, f4, f5, f6)      (45) 
where, 
f(ξ)=[ f1 f2 f3 f4 f5 f6]T =[S U W θ τ p]T 
and F represents the six functions of eqns (22-24) arranged 
in column matrix form. Solutions of eqns (45) by the 
method of multisegment integration in the interval ξ1 ≥ ξ ≥ 
ξM+1, where ξ1 corresponds to symmetric end point (ξ = 0) 
and ξM+1 corresponds to the centre of the buckled rod at 
which the boundary conditions (28) are applicable, consists 
of the following steps: 
 
(i) Division of the given interval of ξ into Mo sufficiently 

small segments so that the length of each segment is 
less than the critical meridional length as defined by 
Sepetoski et al.14 

(ii) Integration of Eq.(45) over each of the Mo segments 
as an initial value problem. The initial values used for 
starting in each segment are arbitrary. 

(iii) Integrations of six additional initial-value problems in 
each segment for which the variables are the 
derivatives of the six fundamental variables S, U, W, 
θ, τ and p with respect to each of their initial values. 
The necessary equations for these integrations may be 
derived by differentiating eqns (22-24) with respect to 
the initial values of each of the six fundamental 
variables. The initial values for these six initial value 
problems are the columns of a 6 × 6 unit matrix. 

(iv) Solution of a system of Mo matrix equations, which 
ensures continuity of the variables at the end points of 
the segments. 

 



Thermal Buckling and Postbuckling Characteristics of Extensional Slender Elastic Rods 
 

Journal of Mechanical Engineering, Vol. ME 40, No. 1, June 2009 
Transaction of the Mech. Eng. Div., The Institution of Engineers, Bangladesh 

6

Table 1. Comparison of Results for Simply Supported Extensible Heated Rod with γ = 0 and λ = 120. 

p/pcr τ/τcr 

β Complete 
elliptical 
integral 

Multisegment 
integration 
technique 

Shooting 
method 

(Li and Cheng6) 

Complete 
elliptical 
integral 

Multisegment 
integration 
technique 

Shooting 
method 

(Li and Cheng6) 
2 0.9995 0.9995 0.9950 1.4426 1.4438 1.4438 
4 0.9982 0.9982 0.9982 2.7768 2.7764 2.7764 
6 0.9959 0.9958 0.9959 5.0033 5.0018 5.0019 
8 0.9927 0.9927 0.9927 8.1242 8.1265 8.1265 
10 0.9886 0.9885 0.9886 12.157 12.159 12.159 
12 0.9836 0.9836 0.9836 17.114 17.112 17.113 
14 0.9777 0.9777 0.9777 23.003 23.001 23.001 
16 0.9710 0.9709 0.9710 29.840 29.842 29.842 
18 0.9633 0.9633 0.9634 37.655 37.656 37.656 
20 0.9549 0.9548 0.9549 46.470 46.467 46.468 

 
 

(v) Repetition of steps (2), (3) and (4) until the conditions 
of continuity of the variables at the end points of the 
segments are satisfied. In each pass the improved 
values of the variables obtained in step (4) are used as 
their initial values in step (2). The convergence of the 
solution is achieved when the values of the variables 
at the end point of a segment as obtained from the 
initial-value integrations of eqns (22-24) match with 
their initial values of the next segment obtained from 
the solutions of matrix equations in step (4). 

 
The convergence studies carried out for the 

postbuckling load ratio (p/pcr) and postbuckling 
temperature ratio (τ/τcr) of simply supported rod for λ = 
120 are tabulated in Table 1. Buckling load and 
corresponding temperature obtained by analytical and 
numerical method are compared with the results of Li and 
Cheng6. These comparisons make the present numerical 
method an excellent one for studying nonlinear 
postbuckling response of slender heated rod or beam. 
 
RESULTS AND DISCUSSION 

In the present analysis, the most significant results 
regarding the phenomenon of thermal postbuckling of the 
rods are presented for typical values of slenderness ratio: 
deformed configuration, maximum deflection, maximum 
inclination angle, maximum curvature, compressive load 
and total deformation. The results are presented for γ = 0 
and γ = –5 (metallic materials), which respectively 
correspond to materials with linear and nonlinear strain-
temperature relationships. The coefficient γ = –5 is 
relatively large for steels, but it is assumed to emphasize 
nonlinear effects.  

The initial equilibrium of the rod is stable and in 
unbuckled state when τ < τcr and when τ > τcr, the rod is in 
the post-buckled state or possesses the secondary 
equilibrium configurations. When τ > τcr the post buckling 
deformations are dependent on λ, which is a feature of 
nonlinear theory of the rod with axial extension. Because 
thermal buckling of a rod is due to the thermally axial 
expansion, the whole deformation depends on the 
elongation of the axial line and the geometric size. It is 
different from the post buckling of rods subjected to 
mechanical loads that the thermal post buckling of a rod is 
a course which develops slowly and monotonously along 
with the increasing of the temperature. It is obvious that τcr 
is not dependent on the slenderness λ, which is a feature of 

linear theory, but using non-linear theory of strain-
temperature relationship, τcr is a function of both 
slenderness ratio λ and strain-temperature coefficient γ. 

Figure 4 presents the deformed configurations of the 
rods as a function of inclination angles. The rising nature 
of inclination angle and the corresponding reverse trends of 
compressive load variation with the change of maximum 
rod deflection are shown in Figure 5. 
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Figure 4. The Buckled Configurations of the Rod for Some 

Values of β 
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Figure 5. Compressive Load and Maximum Angle as a 

Function of Mid-Span Deflection 
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Figure 6. Total Deformation as a Function of the 

Temperature 
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Figure 7. Compressive Load Beyond Bifurcation as a 

Function of the Temperature 
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Figure 8. Maximum Deflection as a Function of the 

Temperature 
 

The rod is initially straight, deprived of initial 
imperfections or initial temperature-induced strain. The 
temperature is evenly increased and the total rod 
deformation ε is monitored with the objective of 
establishing the maximum allowable temperature for each 
slenderness ratio. The temperature at which total 
deformation becomes substantially at the ends of the rod, 
considering linear (γ = 0) and nonlinear (γ = –5) strain-
temperature relationships, are shown in Figure 6. The 
deformation begins when the critical buckling temperature 
is reached and, as expected, it rises with temperature. 
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Figure 9. Maximum Angle as a Function of the 

Temperature 
 

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0 500 1000 1500 2000
τ

K
m

ax

λ = 50 (γ = 0)
λ = 50 (γ = -5)
λ = 100 (γ = 0)
λ = 100 (γ = -5)
λ = 150 (γ = 0)
λ = 150 (γ = -5)
λ = 200 (γ = 0)
λ = 200 (γ = -5)

 
Figure 10. Maximum Curvature as a Function of the 

Temperature 
 

Once the critical buckling load is reached and 
temperature is progressively increased, the compressive 
force arising in the boundaries falls considerably. This is 
clearly observable in Figure 7, where the variation of the 
compressive load versus the temperature gradient for rods 
subjected to linear and nonlinear thermal strain-
temperature relationship is presented. For higher 
slenderness ratios, linear (γ = 0) and nonlinear (γ = –5) 
analyses differ more significantly. 

Figures 8 to 10, respectively, present the results for 
maximum deflection, maximum inclination angle, and 
maximum curvature in the rod, as a function of the 
temperature. The maximum rod deflection which occurs at 
X = 0.5, increases with temperature as shown in Figure 8. 
The maximum inclination angle also increases with 
temperature but it occurs at the rod ends. The maximum 
curvature occurs at the middle of the rod and also 
increases, in modulus, as temperature is progressively 
increased. The characteristics curves are all monotone 
functions of the dimensionless temperature rising τ. The 
interaction points of them with coordinate axis τ are all the 
same and the value is just equal to the critical temperature, 
τcr.  

The buckled deformation depends on the slenderness 
λ and strain-temperature coefficient γ. From the results 
above, we can see that W and β are all monotonously 
increasing functions of τ. Otherwise, the end constrained 
force p decreases gradually from its maximum value p = pcr 
along with the increase of temperature τ. 
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CONCLUSIONS 
Both thermal critical buckling and postbuckling of 

slender rods with pinned-pinned ends and subjected to 
uniform temperature rise are presented. The extensibility of 
the rod due to axial thermal expansion at the immovable 
ends is taken into account. Boundary value problem for the 
nonlinear ordinary differential equations are solved 
effectively by using the multisegment integration 
technique. Also analytical closed-form elliptic integral 
solutions are obtained for comparison. Characteristics 
curves of the critical buckling temperature versus the 
slenderness ratio are plotted corresponding to the linear 
and nonlinear variation of the strain-temperature relation. 
Thermal postbuckling equilibrium paths of extensible rods 
with temperature rising are analyzed. From the present 
results, the following conclusions are reached. 
 
(i) The present paper reports the first attempt in applying 

the multisegment integration analog to the thermal 
postbuckling of uniformly heated rods. Multisegment 
integration method is seen to be capable of 
determining all possible buckling temperatures and 
their corresponding deflections of the rods. 

(ii) Thermal buckling of a rod differs from the buckling of 
rods subjected to mechanical loads. 

(iii) Thermal buckling is due to the thermal expansion of 
an axially constrained rod, so the axial extensibility 
must be considered. 

(iv) The nonlinear strain-temperature coefficient has a 
sharp influence on the critical buckling temperature 
and postbuckling response of the heated rod. 

(v) The dimensionless buckling parameters are also 
sensitive to the slenderness ratio of the rod and show 
the consistent behavior for uniform heating 
conditions. 

(vi) The thermal post-buckling of a rod develops slowly 
and monotonously along with increase of the 
temperature. 

(vii) The magnitude of the axial compressive force arrives 
at its maximum at the onset of buckling and decreases 
as the temperature increases in the post buckling 
regime. 
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