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Abstract: The paper presents, the multigrid method for the solution of combined effect of surface roughness and 

viscosity variation on the squeeze film lubrication of a short journal bearing operating with micropolar fluid. The 

modified Reynolds equation which incorporates the variation of viscosity in micropolar fluid is analysed using 

Multigrid method. The governing modified Reynolds equation is solved numerically for the fluid film pressure and 

bearing characteristics viz. load carrying capacity and squeeze time. The analysis of the results predicts that, the 

viscosity variation factor decreases the load carrying capacity and squeeze film time, resulting into a longer 

bearing life. The results are compared with the corresponding analytical solutions.  
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INTRODUCTION 

The study of micropolar fluids has attention due to 

their uses in number of processes that takes place in 

industries viz. extrusion fluid polymers, liquid crystal 

solidification, cooling of metallic plate in a bath, 

animal blood exotic lubricants, colloidal and 

suspension solutions. The classical Navier-Stokes 

theory is inadequate in the study of these problems, as 

the micropolar fluid theory is a subclass of microfluid 

theory which is obtained by introducing the skew 

symmetric properties of the gyration tensor with a 

condition of microisotropy. The squeeze film 

behaviour takes place from the phenomenon of two 

surfaces which are lubricated and approaches each 

other with a normal viscosity. Since the viscous 

lubricant is resisted to extrusion, a pressure is built up 

during the interval, and the lubricant film supports the 

load. Therefore, the squeeze film action analysis 

focuses mainly on the load carrying capacity and rate 

of approach.  In Gyroscopes, gears, aircraft engines, 

automotive engines and synovial joint mechanics the 

squeeze film action applications are commonly seen. 

Eringen’s1 micropolar fluid theory deals with the fluids 

which posses some microscopic effects arising from 

the local structures and micromotion of fluid elements. 

These fluids supports stress moments and body 

moments which influences the body inertia. A subclass 

of these fluids is the micropolar fluids, which exhibit 

the microrotational effects and microrotational inertia.  

Eringen’s  micropolar fluid theory defines the rotation 

vector, setting up of stress-strain rate constitutive 

equations.  

The applications of different kinds of fluids as 

lubricants under many circumstances have been given 

more importance in the development of modern 

machines. To prevent the viscosity variation with a 

change in temperature, high molecular-weight 

polymers are added as a viscosity index improver. Lin2 

studied the static and dynamic behaviours of squeeze 

films using a couple stress fluids in a short journal 

bearing. The couple stress fluid model were studied by 

Lin et al.3-5, Wang et al.6, Guha et al.7 and many 

researchers have analysed the hydrodynamic 

lubrication problems with different journal bearing 

geometries. Spikes8 showed the behaviour of lubricants 

in contacts, current understanding and future 

possibilities. The surface roughness effect on the 

hydrodynamic lubrication of bearings was studied by 

many investigators so far. Several researchers used the 

stochastic theory model to study the surface roughness, 

developed by Christensen. This model was 

successfully used by Gururajan et al.9, Hsiu et al.10 to 

study hydrodynamic lubrication of rough surfaces and 

also many researchers studied the effect of surface 

roughness on the dynamic characteristics of finite 

slider bearings. The surface roughness effects on the 

thermo-hydrodynamic lubrication of journal bearings 

lubricated by bubbly oil was studied by Butch et al.11 

and effect of oil additives on the performance of a wet 

friction clutch material studied by Scott et al.12  predicts 

that, the effect of surface roughness is to increase the 

load carrying capacity, stiffness and damping 

coefficients. In case of Newtonian fluids it is observed 

that the increase in load carrying capacity, lower 

coefficient of friction and delayed time of approach by 

keeping the viscosity constant. Many investigators13-21 

reported that the uses of micropolar fluids in different 

bearing systems which results in decrease in the load 

carrying capacity and improve in squeeze time. In 

general, viscosity of all the fluids decreases with 

increase in temperature.  

Earlier theories were based on the assumption that 

the viscosity  was kept constant although it is a function 

of pressure as well as temperature. In many practical 

applications the variation of viscosity and temperature 

are important, where the lubricants are supposed to 
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function over wide range of temperatures. The 

viscosity temperature relationship formulae proposed 

are purely empirical, and for accurate calculations 

experimental data is required for the lubrication 

engineers. The viscosity film thickness relationship is 

replaced by viscosity-temperature relationship which 

has been verified experimentally. The highest 

temperature occurs in the zones where the film 

thickness is minimum22. 

The following assumptions are made in this paper. 

1. There exists a thermal equilibrium. 

2. The variation of viscosity temperature relation is 

replaced by viscosity film thickness relationship. 

3. Hence the empirical relationship for the viscosity 

variation can be written as,  

    

Q

h

h








=

1

1µµ                                   (1) 

where  µ1 is the viscosity at the film thickness  and 

Q lies between 0 and 1 according to the nature of the 

lubricant (Q=0 for perfect Newtonian fluids and Q=1 

for perfect gases). The effect of viscosity variation due 

to lubricant additives in journal bearings were 

explained by Sinha et al.23 by employing the relation 

given in Eqn (1) and Naduvinamani et al.24 studied the 

combined effect of viscosity variation and surface 

roughness on the squeeze film lubrication of journal 

bearings with micropolar fluids analytically.  

In this paper, attempts have been made to solve the 

modified Reynolds equation using multigrid method. 

The combined effect of surface roughness and 

viscosity variation on the lubrication characteristics of 

journal bearings lubricated with micropolar fluid is 

analysed numerically and the paper is organised as 

follows. 

The introduction of the proposed problem is 

described above. Next, the mathematical formulation 

of the problem, description of the multigrid method, 

and solution of the problem for the short bearing 

approximation are given. The longitudinal and 

transverse roughness patterns are also presented. Then, 

the results and discussions, and the important 

conclusions of the proposed work are given. 

 

MATHEMATICAL FORMULATION OF THE 

PROBLEM 

The physical configuration of the journal bearing is 

shown in Fig. 1. The shaft of radius r approaches the 

bearing surface with velocity V. The film thickness h 

is a function of θ, h=c+e cosθ , where c is the radial 

clearance and e is the eccentricity of the journal centre. 

The lubricant used in the present configuration is 

micropolar fluid.  

 
Figure 1. Squeeze film geometry of a journal bearing 

 
     

The constitutive equations proposed by Eringen1 for 

micropolar fluids are same as the equations of 

hydrodynamic lubrications. The resulting equations 

under steady state conditions are, 

Conservation of linear momentum: 
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Conservation of angular momentum: 
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Conservation of mass: 
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where (u,v,w)  are the components of velocity in the   x, 

y and z directions, respectively. (v1,v2,v3) are 

microrotational velocity components, χ is the spin 

viscosity coefficient, γ  is the viscosity coefficient for 

micropolar fluids and µ is the coefficient of viscosity 

of Newtonian fluid. The boundary conditions at the 

bearing surface are 
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and at the journal surface are 

 
dt

dh
zhxvzhxwzhxu === ),,(,0),,(),,( , 
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where  h  is the fluid film thickness. 

 

 MULTIGRID METHOD   

The discretized equation can be written in the form  

 
hhh fuA = , where A is a linear operator,  u is the 

solution, f is the right hand side and h is the mesh size. 

The algorithm for V cycle multigrid method as 

discussed in25-27 is given as follows. 

• Relaxing 
hhh fuA =  2 times with initial guess 

hu0
    

• Compute the residual  
hhhh uAfr −=  

• Restrict  ,22 hhh rIf = hhh uIu 22 =  

• Relaxing  
hh uA 22 = hf 2

  , 2 times with guess  

hu 2

 

• Compute the residual,  
hhhh uAfr 2222 −=  

• Restrict 
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h
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• Solve the error equation,  ( ) HHH fAe
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• Interpolate . hh

h
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• Correcting the fine grid approximation  
hhh euu 222 +←  

• Interpolate  hh

h

h uIe 2
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• Correcting  
hhh euu +←  

 The initial solution is taken on the finest grid. Two 

times Gauss-Seidel iterations are applied on finest grid 

for smoothing the errors. To transfer the calculated 

residual to the next coarse grid level, the half weighting 

restriction is used. Repeating the procedure till the 

coarsest grid level reaches the single point. The 

solution is obtained at the coarsest level. The bilinear 

interpolation is applied to prolongate the solution 

obtained from coarsest level to the next fine grid level 

and then applying two times Gauss- Seidel iterations. 

Repeating the procedure until the original finest grid 

level is reached. This is referred to as one V- cycle. 

 

 

 

SOLUTION OF THE PROBLEM 

The velocity components u and w are solved from 

Eqns. (2) and (3) subject to the boundary conditions 

(5) and (6), we obtain  

( )

( ) 4131

21

2

11

2

A]mycoshA

mysinhA[
m

N2
yA

x

p

2

y1
u

++

−







+

∂
∂

µ
=

   

(7) 

 

( )

( ) 4232

22

2

12

2

A]mycoshA

mysinhA[
m

N2
yA

z

p

2

y1
w

++

−







+

∂
∂

µ
=

 (8) 

 

   ( )

( )mysinhA

mycoshAA
z

p
y

2

1
v

31

22121

+

+






 +
∂
∂

µ
=                  (9) 

 ,                 

( ) ( ) 






 +
∂
∂

−+= 1131213
2

1
sinhcosh A

z

p
ymyAmyAv

µ
 

(10) 

 

 
2111 2 AA µ=  , ( ) [ ][ ]

( )mh

xphmhA
A

cosh1

/2/sinh31
21 −

∂∂−
=

µ  , 

 

5

2

12

1
)]cosh(1[

2
)sinh( 

2 A
mh

m

N
mhh

z

ph
A









−+
∂
∂

−=
µ

  

µ2

12
22

A
A =

5

2

31

1
)sinh(

2
]1)[cosh(

22 A
mh

m

N
hmh

h

x

ph
A









−+−
∂

∂
=

µ
 

5

2

32

1
)sinh(]1)[cosh(

2 A
mh

m

N
hmh

h

z

ph
A









−+−
∂
∂

=
µ

, 

,31

2

41

2
A

m

N
A =         

32

2

42

2
A

m

N
A =  









−−= ]1)[cosh(
2

)sinh(
2

5 mh
mh

N
mh

h
A

µ
,  

l

N
m = , 

2/1

2 







+

=
µχ

χ
N   

2/1

4 







=

µ
γ

l            (11)  

where N is the coupling number and  l is the 

Characteristic length of the polar suspension.  The 

modified Reynolds equation is obtained by integrating 

the Eqn. (4) with respect to y over the film thickness h 

and replacing u  and w  in Eqn. (4) by their respective 

expressions given in Eqns. (7) and (8).  Using the 

boundary conditions for v  given in Eqns. (5) and (6) in 

the form 
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where 
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Short Bearing Approximation 
A Short bearing approximation is considered in order 

to simplify the problem and to get a solution for the 

fluid pressure. The axial variation of pressure is 

considered by neglecting the circumferential variation. 

The Modified Reynolds equation Eqn. (12) reduces to  
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Substituting  Eqn(1) in the above equation, we get 
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Including roughness features, taking stochastic 

expectation of Eqn. (15), we get stochastic Reynolds 

equation, 
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where expectancy operator E( )•   is defined by, 

E ( )• =  ∫
∞

∞−

( )• )( shf  sdh                (17) 

             

where f  is the probability density function of the 

stochastic film thickness hs.  The probability density 

function is given by, 
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where 13σ=c  , 1σ  is the standard deviation. By 

Christensen stochastic theory for the rough surfaces, 

the two types of roughness patterns are shown below. 

 

Longitudinal Roughness 

In this case, the roughness is assumed in the form of 

long narrow ridges and furrows running in the z 

direction and film thickness assume the form, 

 ),()( ξzhthH s+=  

 

Then Eqn. (16) becomes 
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Transverse Roughness  

The roughness is assumed in the form of long ridges 

and furrows running in the x direction and the film 

thickness are 

 ),()( ξθshthH +=  

  

Then Eqn. (16) becomes 
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For probability density distribution function given by 

Eqn. (17), we have  

 hHE =)(                             (20) 

 

The modified Reynolds Eqns. (18) and (19) for 

longitudinal and transverse roughness types of 

directional structures can be expressed as, 
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Introducing the following non dimensional parameters 

and variables:  
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The stochastic generalized Reynolds equation Eqn. 

(21) has to satisfy the following boundary conditions: 

0010 ==±== zat
dz

pd
andzatp

The Modified Reynolds equation Eqn. (21) can be 

solved by using multigrid method. Using first order 

finite difference scheme, Eqn. (21) can be descritised 

as below 
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With the fluid film pressure known, the squeeze film 

characteristics such as load carrying capacity, squeeze 

time can be evaluated. The load carrying capacity is 

calculated by integrating the squeeze film action of the 

negative pressure because the diverging film side is 

neglected.  The load carrying capacity of the bearing 

operating under the steady load is given by 
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Introducing the nondimensional quantity 
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The load carrying capacity can be expressed in 

dimensionless form as 
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The nondimensional load carrying capacity E ( W ) can 

be numerically evaluated by using Gaussian quadrature 

method. The time taken by the journal centre to move 

from from 0=ε  to 1εε =  which can be  obtained 

by integrating eqn. (24) with respect to time at constant 

load )(WE .  

 

Introducing the nondimensional response time 
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The velocity of the journal centre can be expressed 
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Eqn. (24) is a first order nonlinear differential 

equation, with the initial condition 

00 == τε to                  (28) 

The above differential equation can be solved using 

fourth order Runge-Kutta method. 

 

RESULTS AND DISCUSSION 
The effect of surface roughness pattern considering 

the viscosity variation on the squeeze film lubrication 

of short journal bearing lubricated with micropolar 

fluids is analysed using multigrid method. The results 

are analysed for various non dimensional parameters 

such as the coupling number N, the additives length  

size parameter  l  and the exponent Q of the viscosity 

variation. In the limiting case as 0→l   the effect of 

microstructures becomes negligible. The roughness 

parameter c characterizes the effect of surface 

roughness and 0→c  the problem reduces to the 

corresponding smooth case. The following parameters 

values are used for the numerical computation  

 ;4.0  ,2.0  ,0.0=l ;6.0 ,4.0 ,2.0 ,0.0=N        
1.0 ,0.0=c  and   .0.1 ,5.0 ,0.0=Q     

 

Squeeze film pressure 

 The variation of nondimensional squeeze film 

pressure p with the angular coordinate θ  for different 

values of Q is shown in Fig. 2. The dotted curves 

indicate the results of Newtonian case. It is observed 

that, as the viscosity variation factor increases the 

squeeze film pressure decreases rapidly for couple 

stress fluid than Newtonian fluid. Figure 3 presents the 

variation of p with θ  for different values of Q with 

eccentricity ratio 2.0=ε , non-micropolar parameter   

4.0=l and roughness parameter  1.0=c  for both 

longitudinal and transverse roughness patterns. 

 

 
Figure 2.  Variation of non-dimensional pressure 

p  with θ  for different values of Q with 

.5.02.0,2.0),4.0,0.0( ==== λε andNl  

 

Load Carrying Capacity 

The variation of nondimensional load carrying 

capacity W with the eccentricity ratio parameter ε  is 

shown in the Fig. 4 for the various values of Q. It is 

observed that W increases for increasing values of ε
and decreases for the increasing values of Q.  Figure 5 

predicts that when λ  increases W increases. The 
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variation of load carrying capacity W  with 

eccentricity ratio ε  as a function of l  with N=0.2, 

1.0  ,5.0 == cλ  is shown in Fig. 6.  It is observed 

that W increases rapidly for both longitudinal and 

transverse roughness patterns, also  the effect of 

transverse roughness pattern on the bearing surface is 

enhancing the load carrying capacity as compared to 

the longitudinal roughness pattern. 

 
Figure 3. Variation of non-dimensional p

 
with θ  

for different values of Q with 

.5.0,2.0,2.0,1.0,4.0 ===== λε Ncl  

 

Figure 4. Variation of nondimensional load W with 

ε  for different values of Q with 

.5.02.0,4.0 === λandNl  

 

Figure 5. Variation of nondimensional load W  with 

ε  for different values of Q with 

.2.0),25.0,5.0(,4.0 === Nandl λ  

 

Figure 6. Variation of nondimensional load W with 

ε  for different values of Q with 

.5.02.0,4.0 === λandNl  
 

Squeeze Film Time 

 

 

Figure 7. Variation of nondimensional time τ  with 

eccentricity ratio ε  for different values of Q with 

2.0,4.0 == Nl  and )25.0,5.0(=λ
 

 
Figure 8. Variation of nondimensional time τ  with 

eccentricity ratio ε  for different values of Q with 

2.0,4.0 == Nl , 5.0=λ  and 1.0=c .
 

 

The variation of non-dimensional squeeze film time 

as a function of ε for different values of Q is shown in 

Fig 7. It is observed that the squeeze film time 

decreases for the increasing values of Q. The presence 
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of couple stress indicates that the increase in response 

time than the Newtonian fluid. Figure 8 depicts that the 

variation of dimensionless response time increases 

with eccentricity ratio parameter in both longitudinal 

and transverse roughness patterns. 

 

CONCLUSIONS 
In this paper, the combined effect of viscosity 

variations and surface roughness in the pure squeeze 

film lubrication with additive lubricants in short 

journal bearing is analysed and conclusions are made 

as follows 

• In both longitudinal and transverse roughness 

patterns the squeeze film pressure decreases due to 

the presence of viscosity variation. 

• Load carrying capacity increases with increasing 

values of eccentricity parameter for both 

longitudinal and transverse roughness patterns. 

• When the viscosity variation parameter increases, 

the squeeze film time decreases in both 

longitudinal and transverse roughness patterns. 
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