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Abstract: This paper deals with the second order kinematics of three degree-of-freedom (DOF) planar parallel 

manipulators. The simple and compact expressions are derived for both the inverse and forward acceleration 

analyses using screw theory. Moreover, as an example, a 3-DOF planar parallel manipulator is introduced and its 

kinematics is analyzed using the proposed method. 

 

Keywords: planar parallel manipulators; velocity analysis; acceleration analysis; Screw theory  

 

 

INTRODUCTION 

As it is well known a general parallel manipulator is 

a mechanism composed of a mobile platform connected 

to the ground by several independent kinematic chains, 

called serial connector chains. Each serial connector 

chain can be regarded as a serial manipulator with both 

actuated and passive joints, the former providing the 

actuation to the mobile platform. Despite of a reduced 

workspace and a more complex solution of the direct 

kinematic problem than serial manipulators, the higher 

stiffness, accuracy and payload/weight ratio which can 

be achieved by parallel manipulators make them 

attractive systems for industrial applications. 

A concept which has been employed extensively in 

kinematic analysis of parallel manipulators is screw 

theory. For instance, it has been used in identifying the 

degrees of freedom [1], singularity analysis [2], type 

synthesis [3] and also in velocity and acceleration 

analysis [4, 5] of spatial parallel manipulators. On the 

other hand, in the case of planar parallel manipulators, 

the literature is so limited [6, 7]. 

According to reciprocal screw theory [8-10], a screw 

$ is defined by a straight line (Fig. 1) with an associated 

pitch  h and is conveniently denoted by a six 

dimensional vector: 
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where s is a unit vector along the screw axis, t = r × s 

+ hs defines the moment of the screw axis about the 

origin of the reference frame and r is the position vector 

of any point on the screw axis with respect to the 

reference frame. 

Manipulator joints can be modeled with their screw 

coordinates [10]. For revolute joints the associated 

pitch is equal to zero and for prismatic joints the 

associated pitch is equal to infinity which is 

normalized, yielding respectively 
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Figure 1. A screw [3]. 
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Physically, a screw can be used to represent the twist 

or wrench of a rigid body. For a twist T = [ωωωωT vT]T, ωωωω 

denotes the angular velocity and v denotes the linear 

velocity of a point in the rigid body. On the other hand, 

for a wrench W = [fT mT]T, f denotes the resultant force 

and m denotes the resultant moment about the origin of 

the reference frame. 

For two screws $1 = [s1 t1]
T and $2 = [s2 t2]

T, Lie 

product or dual motor product is defined as [11] 
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Moreover, the reciprocal product of two screws is 

defined as 
 

122121 $$ tsts ⋅+⋅=o  (4) 

 

when 0$$ 21 =o  then two screws $1 and $2 are said 

to be reciprocal. 

To define the concept of reciprocity for revolute 

and prismatic joints, assume a wrench is acting on a 

twist. If the line of action of a force crosses the axis of 

a revolute joint, the force does not affect the rotation 
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of the joint, i.e., the force cannot exert any moment 

about the joint. Therefore, the force is reciprocal to 

the joint. Also, if the moment of the wrench is 

perpendicular to the revolute joint axis, the moment is 

reciprocal to the joint. If the line of action of a force is 

perpendicular to the direction of a prismatic joint, the 

force does not affect the translation of the joint. Also a 

moment, regardless of its direction, is reciprocal to a 

prismatic joint. Therefore, two screws are reciprocal if 

the power developed by the wrench on a twist is zero 

[7], i.e., 
 

0=⋅+⋅ fvmω  (5) 
 

The purpose of this paper is to show how screw 

theory can be used to systematically analyze the 

acceleration of 3-DOF planar parallel manipulators 

(PPMs). The proposed method can be considered as an 

extension of the results previously obtained by Rico 

and Duffy [4] in kinematic analysis of spatial parallel 

manipulators. 

 

KINEMATICS OF PLANAR PARALLEL 

MANIPULATORS  
Here, we are interested only in symmetrical 3-DOF 

fully-parallel planar manipulators; thus these 

manipulators have three legs while each of them is 

composed of two passive and one active joint (Fig. 2). 

To describe the various types of legs, a revolute joint 

is denoted by R and a prismatic joint by P. When a 

joint is active (actuated), its corresponding symbol 

will be underlined. 

For manipulators with δ DOFs, where δ<6, such as 

planar manipulators, the same 6−δ coordinates of the 

joint screws will be zero at any configuration [12]. 

Thus, for PPMs, we can use 3-entries screws to 

represent the joint screws. For these manipulators, 

kinematic screws associated with the revolute and 

prismatic joints will be respectively 
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where rR is the 2D position vector of revolute joint 

center and s is a 2D unit vector along the direction of 

prismatic joint. Moreover, E is a 2× 2 orthogonal 

matrix rotating vectors in a plane through an angle of 

90° counterclockwise, i.e., 
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The concepts of velocity and reduced acceleration 

states were first introduced by Sugimoto [11] and Rico 

and Duffy [4] respectively. These quantities can be 

redefined for PPMs as two 3-entries screws, as 

follows 
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Figure 2. A typical 3-DOF planar parallel 

manipulator along with the screws of the first leg. 
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where ω and ω&  are the angular velocity and 

acceleration of end-effector respectively. In addition, 

0
~
a  and 0

~
v  are 2D vectors representing translational 

velocity and acceleration of the point O, respectively. 

In the following sections, 3-entries screws are used 

to analyze the kinematics of planar parallel 

manipulators. 
 

VELOCITY ANALYSIS OF PPMS 

The velocity state of the end-effector of a parallel 

manipulator, body m, with respect to the base link, 

body 0, can be expressed as a linear combination of 

the infinitesimal screws representing kinematic pairs 

of each serial kinematic chain, see Sugimoto [11]. 

Using the 3-entries screws presented above, velocity 

state of the end-effector of a PPM can be obtained as 
 

323221211010 $$$ iiiiiiO θθθ &&& ++=V  ,  i=1,2,3 (10) 

 

where 1+j
i

jθ&  and 1$ +j
i

j  are the generalizes velocity 

and the associated screw of the joint connecting links j 

and j+1 in the i-th kinematic chain respectively (Fig. 

2). 

The inverse velocity analysis consists of finding 

joint rate velocities of the parallel manipulator, given 

the velocity state of end-effector with respect to fixed 

platform. According to Eq. (10), it follows that 
 

iOi θVJ &=−1  , i=1,2,3 (11) 

 

where ]$$$[ 322110
iiii =J  is the i-th Jacobian 

matrix of the corresponding leg and 
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T
iiii ][ 322110 θθθ &&&& =θ  is the i-th vector of joint rate 

velocities. 

On the other hand, the forward velocity analysis 

consists of finding the velocity state of end-effector, 

with respect to the fixed platform, given the active joint 

rate velocities.  

To eliminate the passive joint velocities from Eq. 

(10), it is multiplied (via the reciprocal screw product) 

with a screw, denoted by r
i$ , reciprocal to all passive 

joint screws in the i-th leg. The reciprocal screw 

depends on the two passive joints screws in the i-th 

leg. If the two passive joints are revolute, the 

reciprocal screw is a zero-pitch screw (i.e., a pure 

force) with an axis lying in the xy plane and 

intersecting the centers of the revolute passive joints 

(Fig. 3a). On the other hand, when one of the passive 

joints is revolute and the other is prismatic, the 

reciprocal screw is a pure force passing through the R 

joint center and perpendicular to the direction of the P 

joint1 (Fig. 3b) [6]. In the both cases, r
i$  can be 

expressed as 
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where e is a 2D unit vector along the direction of the 

reciprocal screw and m is the magnitude of the moment 

of e with respect to the origin of the reference 

coordinate frame.  

Reciprocal product of both sides of Eq. (10) with r
i$  

leads to 
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in which the superscript “a” denotes the active joint and 

∆ is given by 
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Upon writing Eq. (13) for i=1,2,3, we obtain 
 

θMKV &=O  (15) 

 

where Taaa ][ 321 θθθ &&&& =θ  is the vector of active 

joint velocities. K and M are the Jacobian matrices of 

 
1 For a passive joint of the revolute or prismatic type, the 

corresponding screw will be generally of the form: $ = [0 0 p 

q r 0]T where p, q and r are the non zero entries and the 
reciprocal screw can be $r = [e1 e2 0 0 0 m]T. Thus, 

According to the physical meaning of the reciprocal screws, 

$r denotes a pure force lying in the xy plane.  
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Therefore, velocity state of the end-effector can be 

gained as 
 

)(1
θMKV &−=O  (16) 

 

Finally, once the angular velocity of end-effector 

and translational velocity of the reference point O are 

calculated, the translational velocity of operating point 

of the end-effector, E, is calculated using classical 

kinematics. Indeed 
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~~

Ervv ω+=  (17) 
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(a)                                    (b) 
 

Figure 3. Reciprocal screw for (a) two passive R joints 

and (b) one passive R joint and one passive P joint [6]. 

 

ACCELERATION ANALYSIS OF PPMS 
Rico and Duffy [13] obtained an expression for the 

reduced acceleration state of the end-effector of a 

serial chain in terms of joint screws. This expression 

can be redefined for PPMs using the 3-entries screws 

as 
 

i
LieiiiiiiO $$$$ 323221211010 +++= θθθ &&&&&&A  ,  i=1,2,3 (18) 

 

where 1+j
i

jθ&&  is the generalized acceleration of the 

joint connecting links j and j+1 in the i-th kinematic 

chain and i
Lie$  is defined as 

 

]$$[]$$$[$ 32322121323221211010
iiiiiiiiii

i
Lie θθθθθ &&&&& ++=

 (19) 

In Eq. (19), the rate of passive joints can be 

obtained by dot multiplying both sides of Eq. (10) by 

a vector perpendicular to the screw vectors of the 

other two joints. For instance, if 21
iθ&  denotes the rate 

of a passive joint then 
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In addition, if $1 = [p1 q1 r1]
T and $2 = [p2 q2 r2]

T 

are two planar screws of the manipulator joints then 

Lie product of these two screws can be obtained as 

(see appendix A) 
 

[ ]Tqpqprprp 1221122121 0]$$[ +−−=  (21) 

 

Now, the inverse and forward acceleration analyses 

of the PPMs can be carried out using the above 

relations. 

Following the trend of previous section, the inverse 

acceleration analysis, in other words computation of 

the joint rate accelerations of the manipulator given 

the acceleration state of the end-effector, can be 

calculated, according to Eq. (18), as follows 
 

iLieOi θAJ &&=−− )$(1  (22) 

 

where T
iiii ][ 322110 θθθ &&&&&&&& =θ . Whereas the 

forward acceleration analysis, in other words the 

computation of the accelerator of the end-effector with 

respect to the base given the joint rate accelerations of 

the actuated prismatic joints, are calculated by means 

of the expression 
 

bθMKA += &&
O  (23) 

 

in which Taaa ][ 321 θθθ &&&&&&&& =θ  and vector b is obtained 

as follows 
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Thus 
 

)(1
bθMKA += − &&

O  (24) 

 

Finally, translational acceleration of point E is 

computed using the following relation. 
 

OEOEOE r //
2~~
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in which OEOEr // r= . 

 

ILLUSTRATIVE EXAMPLE 
One of the 3-DOF PPMs, proposed in the literature, 

is the 3-PRP star-triangle PPM [14] in which the base 

and moving platform (end-effector) of the manipulator 

are triangle- and star-shaped, respectively. Here, a new 

3-PRP PPM is introduced by replacing the base and 

moving platform of the mentioned manipulator. Then, 

the kinematics of this new manipulator, which is called 

Triangle-Star PPM (Fig. 4), is analyzed using the 

results obtained above.  

It is obvious that for analyzing the velocity and 

acceleration of a manipulator, the forward position 

analysis is an essential step. For the planar parallel 

manipulators, Hunt showed that the forward position 

kinematics admits at most 6 solutions [15] and several 

authors have shown independently that their forward 

position kinematics can be reduced as the solution of a 

characteristic polynomial of degree 6, see for instance 

[16].  

As shown in Fig. 4, the 3-PRP Triangle-Star PPM 

consists of a fixed star and a moving triangle (end-

effector) connected to each other by three legs. Each 

leg starts with a prismatic actuator followed by two 

passive revolute and prismatic joints. Fig. 5 shows the 

Geometric model of the manipulator along with the 

notations used to define the geometric parameters. 

 The reference frame {X, Y} is attached at the 

centered point O of the fixed star. ρi is the actuated 

joint variable of the i-th leg. Vertex B1 of the moving 

triangle is chosen as the operating point. Therefore, 

the output variables are the position coordinates (x, y) 

of point B1 and φ that is the orientation angle of end-

effector. 
 

 
 

Figure 4. The Triangle-Star planar parallel 

manipulator.  
 

With reference to Fig. 5, three sets of constraint 

equations can be written through three legs of the 

manipulator as follows 
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in which the parameters xAi and yAi can be obtained by 
 

iiAi Rx γρ cos)( −=  (29a) 

iiAi Ry γρ sin)( −=  (29b) 
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Figure 5. Geometric model of the triangle-star planar parallel manipulator. 

 

where iOCR =  (i=1,2,3) and γi is the angle 

between the corresponding branch of the fixed star and 

the x-axis. 

Obtaining AiBi (i=1,2,3) from the first equation in 

each set of Eqs. (26)–(28) and introducing it into the 

second equation of the same set leads to 
 

321 ZyZxZ =+  (30) 

654 ZyZxZ =+  (31) 

987 ZyZxZ =+  (32) 

 

where 
 

φsin1 =Z  
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φφ sincos 113 AA xyZ −=  
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Eqs. (31) and (32) constitute a system of two linear 

equations in two unknowns x and y, thus these two 

variables can be computed using Cramer’s rule as 
 

7584

9586

ZZZZ

ZZZZ
x

−

−
= , 

7584

7694

ZZZZ

ZZZZ
y

−

−
=  (33) 

 

Now by introducing Eq. (33) into Eq. (30) and using 

the trigonometric entities:  
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a quadratic equation in u is obtained as follows 
 

001
2

2 =++ GuGuG  (35) 

 

while Gi depends on the kinematic parameters of the 

manipulator and are presented in Appendix B. What is 

important to point out here is that the above equation 

admits two real solutions for u. Once u is found, a 

unique value of the variables φ, x and y can be 

calculated from Eqs. (34) and (33) 2.  

Now the forward position kinematics of the 

manipulator is solved with the following values (using 

SI units): 
 

6
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θ = , 80=R , 
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π
βα == , 
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Further, it is chosen that the instantaneous 

generalized coordinates are governed by the periodical 

functions: 
 

)sin(10261 t−=ρ  

)sin(10472 t+=ρ  

)cos()sin(10593 tt−=ρ , t=0,…,2π 

 

Thus, moving triangle begins its motion at the time 

t = 0 and 2π seconds later returns to its original pose. 

With the above data, coefficients Gi (i = 0,1,2) are 

calculated for the initial configuration of manipulator 

(t = 0) which are listed in Table 1. Then solving Eq. 

(35) yields two real solutions for u which are 

 
2  It is worth noting that, in contrast to the proposed 

manipulator, the forward position problem of the 
Star-Triangle PPM has only one solution [14]. 
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presented in Table 2 along with the corresponding 

values of φ, x and y. 

Finally, by calculating the parameters a
i$ , r

i$ , iρ& , 

iρ&&  (i=1, 2, 3) and rate of the passive joints (Eq. (20)) 

and introducing them into Eqs. (16) and (24) while 

solution 1 of Table 2 is taken as the initial 

configuration, the most representative numerical results 

are obtained for forward velocity and acceleration 

analyses of the manipulator that are shown graphically 

in Figs. 6-8. 
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Figure 6. Time history of (a) position coordinates of the 

operating point of the end-effector, (b) the orientation 

angle of the end-effector. 

 

Table 1 Coefficients Gi (i = 0,1,2) obtained for the 

numerical example. 
Coefficient value Coefficient value 

G2 132.265372 G0 38.7346282 
G1 −162   

 

Table 2 two real solutions obtained for the forward 

position kinematics of triangle-star PPM. 
No. u φ (x,y) 

1 0.899084 1.46461754 (55.797, 57.745) 
2 0.325726 0.62977756 (80.257, −2.592) 

 

CONCLUSION 

In this work, acceleration analysis of 3-DOFs planar 

parallel manipulators has been successfully approached 

by means of screw theory. To this end, the velocity and 

reduced acceleration states of end-effector  
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Figure 7. Time history of (a) the translational velocity 

of the operating point of the end-effector (b) the angular 

velocity of the end-effector. 
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Figure 8. Time history of (a) the translational 

acceleration of the operating point of the end-effector 
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(b) the angular acceleration of the end-effector. 

are written with respect to the reference frame in screw 

form through each one of the three legs of the 

manipulator. The obtained expressions are simple, 

compact and can be easily translated into computer 

codes. Finally, in order to show the efficiency of the 

presented methodology, it was applied on a 3-DOFs 

PPM known as triangle - star PPM. After solving the 

forward position kinematics of the manipulator, the 

forward velocity and acceleration kinematics were 

analyzed and shown graphically. 
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APPENDIX A 

If we write screws $1 and $2 in complete form, then we 

have 
 

[ ]Trqp 000$ 1111 =  

[ ]Trqp 000$ 2222 =  

 

Using the above screws, the terms on the right side of 

Eq. (3) can be obtained as  
 

0ss =× 21  (A1) 

T
qprp ]0[ 212121 −=× ts  (A2) 

Tqprp ]0[ 121212 −=× ts  (A3) 

 

Introducing Eqs. (A1) to (A3) into Eq. (3) leads to the 

Eq. (21). 

 

APPENDIX B 

Coefficients Gi (i=0, 1, 2) 
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