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Abstract: In this paper, the effects of viscous dissipation on natural convection flow along a uniformly heated 

vertical wavy surface with heat generation have been investigated. The governing boundary layer equations are 

first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting 

nonlinear systems of partial differential equations are mapped into the domain of a vertical flat plate and then 

solved numerically employing the Keller-box method. The numerical results of the surface shear stress in terms of 

skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the velocity as well as the 

temperature profiles are shown graphically and in tabular form for different values of physical parameters 

namely, viscous dissipation parameter Vd, heat generation parameter Q and Prandtl number Pr.  

 

Keywords: Natural convection, uniform surface temperature, wavy surface, viscous dissipation, Prandtl number, 

heat generation. 

 

 

INTRODUCTION 

Natural convection boundary layer  flow along 

various geometrical shapes such as vertical flat plate, 

cylinder, sphere, vertical wavy surface etc, have been 

studied by many investigators and it has been a very 

popular research topic for many years. The viscous 

dissipation effect plays an important role in natural 

convection in various devices which are subjected to 

large deceleration or which operate at high rotational 

speeds and also in strong gravitational field processes 

on large scales (on large planets) and in geological 

processes. The natural convection from an isothermal 

vertical wavy surface was first studied by Yao
1
 and 

using an extended Prantdl’s transposition theorem and 

a finite-difference scheme. He proposed a simple 

transformation to study the natural convection heat 

transfer from isothermal vertical wavy surfaces, such as 

sinusoidal surface. Moulic and Yao
2
 also investigated 

mixed convection heat transfer along a vertical wavy 

surface. Combined effects of thermal and mass 

diffusion on the natural convection flow of a viscous 

incompressible fluid along a vertical wavy surface have 

been investigated by Hossain and Rees
3
. Wang and 

Chen
4
 investigated transient force and free convection 

along a vertical wavy surface in micropolar fluid. 

Natural and mixed convection heat and mass transfer 

along a vertical wavy surface have been investigated by 

Jang et al.
5
 and Jang and Yan

6
. The influence and 

importance of viscous stress work effects in laminar 

flows have been examined by Gebhart
7
 and Gebhart 

and Mollendorf
8
. In both of the investigations special 

flows over semi-infinite flat surfaces parallel to the 

direction of body force were considered. Gebhart
7
 

considered flows generated by the plate surface 

temperatures and Gebhart and Mollendorf
8
 considered 

flows generated by plate surface temperatures. 

Zakerullah
9
 has been investigated the viscous 

dissipation and pressure work effects in axisymmetric 

natural convection flows. In the present study, the 

effect of viscous dissipation on natural convection flow 

of viscous incompressible fluid along a uniformly 

heated vertical wavy surface has been investigated. The 

governing partial differential equations are reduced to 

locally non-similar partial differential forms by 

adopting some appropriate transformations. The 

transformed boundary layer equations are solved 

numerically using finite difference method known as 

Keller box technique
10
 described by Keller and later by 

Cebeci and Bradshaw
11
 along with Newton’s 

linearization approximation. Numerical results have 

been obtained in terms of local skin friction coefficient 

and the rate of heat transfer in terms of local Nusselt 

number, the velocity as well as the tempreture profiles 

for a selection of relevant physical parameters are 

shown graphically and in tabular form. 

 

FORMULATION OF THE PROBLEM 

Steady two dimensional laminar free convection 

boundary layer flow of a viscous incompressible and 

electrically conducting fluid along a vertical wavy 

surface in presence of uniform transverse magnetic 

field is considered. It is assumed that the wavy surface 

is electrically insulated and is maintained at a uniform 

temperature Tw. The surface temperature Tw is greater 
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than the ambient fluid temperature T∞ that is, Tw > T∞. A 

uniform magnetic field of strength β0 is imposed along 

the Y-axis i.e. normal direction to the surface and X 

-axis is taken along the surface. The flow configuration 

of the wavy surface and the two-dimensional cartesian 

coordinate system are shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Physical model and coordinate system. 

 

The boundary layer analysis outlined below allows 

)(Xσ  being arbitrary, but our detailed numerical 

work assumed that the surface exhibits sinusoidal 

deformations. The wavy surface may be defined by 

( ) sinw

n X
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π
σ α  = =  
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 (1)   

where α  is the amplitude and L is the wave length 
associated with the wavy surface. 

The governing equations of such flow of magnetic field 

in presence of heat generation with viscosity variation 

along a vertical wavy surface under the usual 

Boussinesq approximations can be written in a 

dimensional form as: 
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where (X, Y) are the dimensional coordinates along and 

normal to the tangent of the surface and (U, V) are the 

velocity components parallel to (X, Y), g is the 

acceleration due to earth gravity , P is the dimensional 

pressure of the fluid, T is the temperature of the fluid in 

the boundary layer, CP is the specific heat at constant 

pressure,  µ is the dynamic viscosity of the fluid in the 

boundary layer region depending on the fluid 

temperature, ρ is the density, ν is the kinematic 

viscosity, where /ν µ ρ=
, 

k is the thermal 

conductivity of the fluid, β is the volumetric coefficient 

of thermal expansion, β0 is the strength of magnetic 

field,
 0σ  is the electrical conductivity of the fluid, Q0 

is the heat generation constant and
 

2∇  is the Laplacian 

operator, where
 

2 2
2

2 2
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x y

∂ ∂
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The boundary conditions for the present problem are 
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 (6) 

Using Prandtl’s transposition theorem to transform the 

irregular wavy surface into a flat surface as extended by 

Yao [1] and boundary layer approximation, the 

following dimensionless variables are introduced for 

non-dimensionalizing the governing equations  

1
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where θ is the dimensionless temperature function and 

(u, v) are the dimensionless velocity components 

parallel to (x, y) and Gr is the Grashof number. Now 

introducing the dimensionless dependent and 

independent variables into equations (2)–(5), the 
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following dimensionless form of the governing 

equations are obtained after ignoring terms of smaller 

orders of magnitude in the Grashof number Gr. 

0
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It is worth noting that the σx and σxx indicate the first and 

second derivetives of σ with respect to x, therefore, σx = 

/ /d dX d dxσ σ=  and σxx = dσx / dx. 

In the above equations Pr, Q and Vd are respectively 

known as the Prandtl number,  heat generation 

parameter and viscous dissipation parameter, which are 

defined as  
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For the present problem the pressure gradient 

( 0p x∂ ∂ = ) is zero. Thus, the elimination of yp ∂∂ /  

from equations (9) and (10) leads to 
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The corresponding boundary conditions for the present 

problem then turn into  

0, 1 0

0,

u v at y

u as y

θ
θ

= = = = 


= = →∞ 
 (14) 

Now we introduce the following transformations to 

reduce the governing equations to a convenient form: 
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where f(x, η) is the dimensionless stream function, η is 

the dimensionless similarity variable and ψ is the 

stream function that satisfies the continuity equation (8) 

and is related to the velocity components in the usual 

way as  
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Introducing the transformations given in equation (15) 

and using (16) into equations (13) and (11) are 

transformed into the new co-ordinate system. Thus the 

resulting equations are  
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The boundary conditions (14) now take the following 

form: 


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Here  prime denote the differentiation with respect to η. 

However, once we know the values of the functions f 

and θ and their derivatives, it is important to calculate 

the values of the rate of heat transfer in terms of local 

Nusselt number Nux and the shearing stress τw in terms 

of the local skin friction coefficient Cfx from the 

following relations: 

( )
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22
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+

+
=  is the unit normal to the 

surface. Using the transformation (15) and (21) into 

equation (20) the rate of heat transfer in terms of the 
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local Nusselt number Nux and the local skin friction 

coefficient Cfx take the following forms: 

31
24 4 1 ( , )x xNu Gr x x oσ θ

− −
′= − +  (22) 

1
24( / ) / 2 1 ( , )fx xC Gr x f x oσ ′′= +  (23) 

 

RESULTS AND DISCUSSIONS 

The effects of viscous dissipation on natural 

convection flow of viscous incompressible fluid along 

a uniformly heated vertical wavy surface have been 

investigated. Although there are four parameters of 

interest in the present problem, the effects of viscous 

dissipation Vd, the heat generation parameter Q, 

Prandtl number Pr and the amplitude of the wavy 

surface α on the surface shear stress in terms of local 

skin friction coefficient, the rate of heat transfer in 

terms of the local Nusselt number, the velocity and 

temperature profiles, the streamlines and the isotherms. 

Numerical values of local shearing stress and the rate of 

heat transfer are calculated from equations (22) and 

(23) in terms of the skin-friction coefficients Cfx and 

Nusselt number Nux respectively for a wide range of the 

axial distance variable x starting from the leading edge 

for different values of the parameters Pr, Q , Vd and α. 
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Figure  2. (a) Velocity and (b) Temperature profiles 

against η  for different values of Pr with α= 0.1,       
Q = 0.5 and Vd =10. 

 Solutions are obtained in terms of velocity profiles, 

temperature profiles against η and the skin friction 

coefficients Cfx,  the rate of heat transfer in terms of the 

Nusselt number Nux at any position of x  presented 

graphically for selected values of Prandtl number         

Pr = 0.72, 1.0, 1.5, 2.0 5.0, heat generation parameter   

Q = 0.0, 0.5, 1.0, 1.5, 2.0 and viscous dissipation 

parameter Vd = 0.0, 5.0, 10.0, 15.0, 20.0. The different 

values of Prandtl number Pr considered while  α = 0.1. 
Q = 0.5, and Vd = 10.0. The different values of  heat 

generation parameter Q considered while α = 0.1. Pr = 

0.72 and Vd = 25.0.The different values of viscous 

dissipation parameter Vd considered while α = 0.1. Pr 

= 0.72, and Q = 0.5 are also observed and these are 

shown graphically in Figs 2 - 7. 
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Figure  3. (a) Velocity and (b) Temperature 

profiles against η  for different values of Q 
with Pr = 0.72, α= 0.1 and Vd =10. 

 

In Fig. 2(a) and  2(b) the effects of Prandtl number  

Pr on velocity and temperature for α = 0.1. Q = 0.5, and 

Vd = 10.0 have been shown. The different values of 

Prandtl number have been chosen as Pr =  0.72, 1.0, 

1.5, 2.0, 5.0. For the higher values of  Prandtl number 

Pr both the velocity  and the temperature decreases 

such that there exists a local maximum of the velocity 

within the boundary layer. The maximum values of 

velocities are recorded as 0.53860, 0.49030, 0.43351, 

0.39544 and  0.28892  for  Prandtl  number  Pr = 0.72,  
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Figure 4.: (a) Velocity and (b) Temperature profiles 

against η for different values of Vd with Pr = 0.72 , 
α = 0.1  and Q = 0.5. 

 

1.0, 1.5, 2.0 and 5.0 at the position of η = 1.36929, 
1.30254, 1.23788, 1.23788 and 1.05539 respectively 

and   the maximum velocity decreases by 46.36%. The 

velocities are recorded as 0.53503, 0.48911, 0.43351, 

0.39544 and 0.28582 for Prandtl number Pr = 0.72, 

1.0, 1.5, 2.0 and 5.0 at the particular position of               

η = 1.23788  and   the velocity decreases by 46.68%.  

The velocities fall down slowly have been seen from 

Fig.  2(a). The values of temperature are recorded as 

0.50125, 0.44706, 0.37840, 0.32953 and 0.18365 for 

Prandtl number Pr = 0.72, 1.0, 1.5, 2.0 and 5.0 at the 

position of η = 1.50946 and   the temperature decreases 

by 63.36%. Figure  2(b) displays the results that the 

change of temperature profiles in the η-direction 
reveals the typical temperature profiles for natural 

convection boundary layer flow, i.e., the temperature is 

zero at the boundary wall. It is observed that the 

velocity as well as the boundary layer thickness 

decreases and the temperature as well as the thermal 

boundary layer thickness decreases for the increasing 

values of Prandtl number. The effects for different 

values of the heat generation parameter Q on the  
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Figure 5. (a) Skin friction coefficient and (b) Rate 

of heat transfer against x for different values of Pr 

with   α = 0.1, Vd =10.0 and Q = 0.5. 
 

velocity and temperature profiles with α = 0.1. Pr = 

0.72,  Vd = 10.0  have been  presented graphically in 

Figs  3(a) and  3(b) respectively . For the higher values 

of the heat generation parameter Q (= 0.0, 0.5, 1.0, 1.5, 

2.0) both the velocity  and the temperature increases. In 

Figs 4(a) and 4(b)  the effects for different values of the 

viscous dissipation parameter Vd on the velocity and 

temperature profiles with α = 0.1. Pr = 0.72,  Q = 0.5   

have been  shown graphically..It has been seen from 

Fig. 4(a) that as the viscous dissipation parameter Vd  

increases, the velocities rising up to the position of        

η = 1.43822 for viscous dissipation parameter               

Vd = 0.0, 5.0, 10.0, 15.0, 20.0  and from that position of 

η velocities fall down slowly and finally approaches to 
zero. It is also observed from Fig. 4(b) that as the 

viscous dissipation parameter Vd  increases, the 

temperature profiles increases. The maximum values of 

velocities are recorded as 0.52232, 0.52570,   0.52909, 

0.53251 and 0.53595 for viscous dissipation parameter 

Vd = 0.0, 5.0, 10.0, 15.0, 20.0 respectively which occur 

at the same position η = 1.43822 and the maximum 

velocity increases by 2.61%. Temperatures are 

recorded as 0.17726, 0.18163, 0.18604, 0.19050 and 
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0.19501 for viscous dissipation parameter Vd = 0.0, 

5.0, 10.0, 15.0, 20.0  respectively at the same position 

of η = 3.20 and the temperature profiles increases by 

10.01%. Both the velocity and temperature profiles 

accumulate nearly in the following points where             

η = 7.55722 and η = 7.86828 respectively for viscous 
dissipation parameter Vd = 0.0, 5.0, 10.0, 15.0, 20.0 

That is, velocity boundary layer thickness and thermal 

boundary layer thickness are unchanged. 
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Figure 6. (a) Skin friction coefficient and (b) Rate 

of heat transfer against x for different values of Q 

with  Pr = 0.72 , α = 0.1 and Vd =10. 
 

In Figs 5(a) and 5 (b) the skin friction coefficient Cfx 

and local rate of heat transfer Nux for different values of 

Prandtl number Pr with α = 0.10. Q = 0.5, and                
Vd = 10.0 have been displayed. It is observed from the 

Fig. 5(a) that for higher values of Prandtl number skin 

friction decreasing upto the axial position of x = 1.0 and 

then skin friction becomes constant for all values of Pr 

that is, skin friction coefficient meet together at the 

position of x = 1.0 and cross the sides that means after 

the axial position of  x = 1.0 skin friction is increasing 

with Prandtl number but frictional force at the wall 

always rising towards downstream. It is seen from the 

Fig. 5(b) that for higher values of  Prandtl number  the  
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Figure 7. (a) Skin friction coefficient and (b) Rate 

of heat transfer against x for different values of  Vd  

with  Pr = 0.72 , α = 0.1  and Q = 0.5. 
 

rate of heat transfer decreases that is heat transfer slows 

down for higher Prandtl number. In Figs 6(a) and 6 (b) 

effects of the heat generation parameter Q on skin 

friction and the rate of heat transfer with α = 0.1. Pr = 

0.72, and Vd = 10.0 have been presented grafically. 

From Fig. 6(a) it is found that skin friction increases 

significantly for the greater values of the heat 

generation parameter Q. However rate of heat transfer 

opposite pattern due to the higher values of the heat 

generation parameter Q which are presented in Fig. 

6(b). The different values of viscous dissipation 

parameter Vd with α = 0.1. Pr = 0.72, and Q = 0.5 of the 

skin friction coefficients and the rate of heat transfer are 

shown graphically in Figs 7(a) and 7 (b) respectively. In 

this case the values of local skin friction coefficient Cfx 

are recorded to be 0.91799, 1.19362, 1.65790, 2.41420 

and 3.60650 for Vd = 0.0, 5.0, 10., 15.0, 20.0 which 

occur at same point x =1.51. From the Fig. 7(a), it is 

observed that at x =1.51, the skin friction coefficient 

increases by  292.87% due to the higher value of 

viscous dissipation parameter Vd. However, the  values 

of rate of heat transfer are found to be 0.34382, 

-1.91932, -7.63071, -21.73558, and -55.25804 for Vd 
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= 0.0, 5.0, 10.0, 15.0, 20.0 which occur at same point x 

= 1.51.  The rate of heat transfer coefficient decreases 

by 16171.79% due to the increased value of viscous 

dissipation parameter Vd = 0.0, 5.0, 10.0, 15.0, 20.0. It 

is seen from the Fig. 7(b) that for higher values of 

viscous dissipation parameter the rate of heat transfer 

decreases that is heat transfer slows down for higher 

viscous dissipation parameter Vd. 

    

 

CONCLUSIONS 

The effects of the Prandtl number Pr, the heat 

generation parameter Q, the viscous dissipation 

parameter Vd and the amplitude of wavy surface α on 
natural convection flow of viscous incompressible fluid 

along a uniformly heated vertical wavy surface have 

been studied. From the present investigations the 

following conclusions may be drawn:  

For the higher values of Prandtl number Pr  the velocity 

profiles, the temperature profiles decreases  slowly and 

finally approach to zero, the rate of heat transfer Nux, 

decreases while the skin friction coefficient Cfx initialy 

decreases and at the position of  x =1.0 becomes 

constant that is skin friction meet at the point and then 

cross the side and increasing with Prandtl number Pr . 

Increasing values of the heat generation parameter Q 

the velocity, the temperature and the skin friction 

coefficient Cfx increases. The rate of heat transfer 

coefficient Nux decreases due to the increased value of 

the heat generation parameter Q.  

Improved value of the viscous dissipation parameter 

Vd  the velocity profiles, the temperature profiles and 

the local skin friction coefficient Cfx,, increases.The rate 

of heat transfer coefficient Nux  decreases due to the 

increased value of viscous dissipation. 

strength. 

 

NOMENCLATURE 
Cfx  Local skin friction coefficient 

Cp  Specific heat at constant pressure [J.kg
-1
.K

-1
] 

f  Dimensionless stream function 

g  Acceleration due to gravity [ms
-2
]
 

Gr Grashof number 

k  Thermal conductivity [Wm
-1
K

-1
]  

k∞  Thermal conductivity of the ambient fluid 

[Wm
-1
K

-1
] 

L Characteristic length associated with the wavy 

surface [m] 

n  Unit normal to the surface 

Nux  Local Nusselt number 

P Pressure of the fluid [Nm
-2
] 

Pr  Prandtl number 

Q Heat generation parameter 

Q0 Heat generation constant 

wq  Heat flux at the surface [Wm
-2
] 

T  Temperature of the fluid in the boundary layer 

[K] 

Tw  Temperature at the surface [K] 

T∞ Temperature of the ambient fluid [K]
  

u, v Dimensionless velocity components along the 

(x, y) axes [ms
-1
] 

x, y Axis in the direction along and normal to the 

tangent of the surface 

 

GREEK SYMBOLS 

α Amplitude of the surface waves 

β  Volumetric coefficient of thermal expansion 

[K
-1
] 

η Dimensionless similarity variable 

θ Dimensionless temperature function 

ψ Stream function [m
2
s
-1
] 

µ Viscosity of the fluid [kgm
-1
s
-1
] 

µ∞ Viscosity of the ambient fluid 

ν Kinematic viscosity [m
2
s
-1
] 

ρ Density of the fluid [kgm
-3
] 

σ0 Electrical conductivity 

τw  Shearing stress 
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