
Dynamic Analysis of Railway Vehicle-Track Interactions  

Journal of Mechanical Engineering, Vol. ME39, No. 2, December 2008 
Transaction of the Mech. Eng. Div., The Institution of Engineers, Bangladesh 

86

 
 

DYNAMIC ANALYSIS OF RAILWAY VEHICLE-TRACK INTERACTIONS 
DUE TO WHEEL FLAT WITH A PITCH-PLANE VEHICLE MODEL 

 
 

Rajib Ul Alam Uzzal, Waiz Ahmed and Subhash Rakheja 
Department of Mechanical and Industrial Engineering 

Concordia University, Montreal, Canada 
 
Abstract: This paper presents the responses of the railway vehicle and track components in terms of contact forces and 
displacements. The considered vehicle model is a five-DOF pitch-plane lumped parameter quarter car model supported on 
two-dimensional track systems comprising three layers. The car body is linked with the vehicle bogie through secondary 
suspension springs and damper elements, which is further linked to the wheels through primary suspension springs and 
damper elements. In modeling of the track, the rail is considered as an infinitely long beam discretely supported by a series 
of springs, dampers and masses representing the elasticity and damping effects of the rail pads, ballasts, and subgrades 
respectively. The non-linear Hertzian contact theory is employed to accomplish the dynamic interactions between the lumped 
mass vehicle and the continuous rail. The drastic effect of one wheel flat to the other perfect wheel-rail contact point is also 
taken into account.  
 
Keywords: Wheel flat, pitch-plane vehicle, wheel-rail impact, component force. 
 
 
INTRODUCTION 
 The existence of defects in a railway wheel is one of 
the main sources of railway vehicle-track abnormal 
vibrations. Wheel flat is the most common type of wheel 
defect encountered by the railway industry. With the 
significant increase of train speed and axle load, the 
vibration of the coupled vehicle and track system due to 
wheel flat is further intensified and the safe operation of 
trains is reduced. Furthermore, the presence of flat in the 
wheel within these criteria may cause harm not only on the 
wheel and rail but also to the entire vehicle and track 
system. The repeated dynamic loads due to wheel flats will 
cause failure and fatigue damage of the vehicle and track 
components. A comprehensive study in the presence of 
wheel flat is thus necessary for prediction of the impact 
force generated at the interfaces of different components of 
vehicle-track system. 
 The dynamic interaction between the vehicle, the 
wheel, and the rail track systems has been the subject of 
extensive research in recent years. Many studies1, 2, 3 have 
focused on the vibrations of a railway track under moving 
vehicles with wheel defects, and different theories and 
models have been presented on this issue. A detailed 
review in the area of railway vehicle dynamics featuring 
the historical survey of the dynamic models to study the 
vehicles-track interactions due to wheel defects at high 
frequency range have been presented by Knothe and 
Grassie4. In analysis of the coupled vehicle-track system, 
some of these studies3, 5 have employed finite element 
method and some6, 7, 8 have used modal analysis method. 
Two types of track models are generally employed in the 
study of vehicle-track interactions. Early track system 
studies considering rail as a discretely supported beam 1, 9 
is now widely used for modelling of wheel-rail interactions 
2, 6, 7, 8, 10. Vehicle-track interaction studies in general 
consider track as a continuous system as Euler-Bernoulli6, 7, 

8 or Timoshenko beam1, 2, 9, 10. Most of these studies, 
however, represent vehicle by a rolling wheel to investigate 
the wheel-rail contact forces.  The impact force response 
such as the bearing force, rail pad force, and the ballast 
force as well as the wheel-rail contact force in the presence 

of wheel flat utilizing comprehensive vehicle model is not 
available in literature. In addition to these, an in-depth 
investigation of the response of perfect wheel-rail contact 
point due to the adjacent wheel flat within the same axle is 
not studied. In the present paper, a dynamic computational 
model for the vehicle and track is formulated by means of 
modal analysis method. An idealized haversine wheel flat 
with the rounded corner is included in the wheel-rail 
contact model. The Rayleigh-Ritz method is employed to 
solve the coupled partial and ordinary differential 
equations of the vehicle-track system. A MATALB 
predefined code “ode45” has been employed to perform 
the time domain analyses of dynamic responses of the 
coupled system. The responses in terms of impact force of 
various vehicle and track components have been evaluated 
and analyzed. The effect of speed on wheel-rail impact 
force in the presence of single and multiple flats are 
investigated. 
 
VEHICLE AND TRACK SYSTEM MODEL 
 The vehicle system model used in this study consists 
of a quarter car supported on a bogie, while the side frame 
is supported on two wheelsets. The primary suspension 

Fig.1. Vehicle and track system model. 
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connecting the wheels and the bogie frame is modeled as a 
parallel combination of a linear spring and a viscous 
damping element. The secondary suspension connecting 
the bogie frame and the car body is also modeled by 
parallel spring and damping elements. The mass of the car 
body

cM , bogie mass
tM , wheel mass 

wM  are coupled 
through the suspension elements, as shown in Fig. 1. The 
total vehicle system model is represented by a 5-DOF 
dynamic system that includes the car body vertical 
motion, ( )cw t , the bogie vertical and pitch motions, ( )tw t  
and ( )t tψ , respectively, and vertical motions of the wheels, 

1( )ww t and 
2 ( )ww t . The primary suspension stiffness and 

damping elements are represented by 
1sK and 

1sC  
respectively, while 

2sK and 
2sC  represent the stiffness and 

viscous damping coefficient due to secondary suspension. 
The contact force between the leading wheel and rail is 
denoted as

1( )P t and that between the trailing wheel and the 
rail as

2 ( )P t . 
tJ , and ( )r t  are mass moment of inertia of the 

bogie, wheel defect profile. 
fl and 

rl are the distance from 

the mass center of the bogie to the front and rear wheel 
centers, respectively.    
 Two-dimensional model of the track system is 
developed upon consideration of three subsequent layers. 
These include the rail, and the lumped representation of the 
sleeper and the ballast. A finite length of the track structure 
is considered by including a total of 100 sleepers/ballasts. 
The track is assumed to be symmetric with respect to its 
centerline. The rail is discretely supported on the sleepers, 
ballasts/subballasts and subgrades elements, as shown in 
Fig. 1, where two layers of discrete masses below the rail 
represent the sleeper and the ballast, respectively. The rail 
beam is modeled as an Euler-Bernoulli beam and the 
conventional beam theory is used to analyze its deflection 
response under a moving load. The rotatory inertia of the 
beam cross section and beam deformations due to the shear 
force are considered negligible for the Euler beam. 
Railpads are placed between the steel rails and the sleepers 
to protect the sleepers from wear and impact damage, and 
they provide electrical insulation of the rails. The 
continuous rail beam is supported on the discrete spring-
damper elements representing the rail pads and fasteners. 
The rail is coupled to discrete sleeper masses, which 
provide support of the rails, and preserve level and 
alignment of the track through the rail pads. The ballast 
blocks are interconnected elastically, so that a vertical 
deflection of one ballast block will be distributed to others 
via the shear springs and dampers. It has been suggested 
that a total of 50 to 60 sleepers/ballast elements would be 
sufficient for analysis of dynamic of wheel-rail impact load 
due to a wheel flat8. In this study, 100 sleepers/ballasts are 
considered in order to investigate the contribution due to 
pitch dynamic of the bogie and various vehicle design 
parameters. The motion of the rail beam coupled with the 
sleeper and ballast is expressed as ( , )rw x t , while ( )siw t and 

( )biw t  describe the motions of the sleeper and ballast 
masses. 

pK ,
pC ,

bK  and 
bC  are the railpad and ballast 

stiffness and damping coefficients, respectively. 
wK and Cw  

are the shear stiffness and damping coefficients of the 
ballast, respectively. The subgrade stiffness and damping 
are denoted as

fK and
fC , respectively. The rail mass per 

unit length is represented by
rm , 

sM is mass of half of the 
sleeper, and 

bM  is mass of each ballast block.  
 
SYSTEM EQUATIONS OF MOTION 
Equations of Vehicle 
 The equations of motion of the vehicle model are 
derived upon neglecting the contribution due to track 
roughness, while the contact forces developed at the wheel-
rail interface are represented by 

1( )P t and 
2 ( )P t . It is further 

assumed that the resultant primary suspension force acts at 
the bogie mass center. The equations of motion of the 
vehicle system are summarized below. 
 
Car body bounce motion: 

2 2 2 2 0c c s c s c s t s tM w C w K w C w K w+ + − − =&& & &     (1) 
Bogie bounce motion: 

1 1 1 2 2( ) ( ) ( )t t s t f t w s t r t w s t cM w K w l w K w l w K w wψ ψ+ + − + − − + −&&

1 1 1 2 2( ) ( ) ( ) 0s t f t w s t r t w s t cC w l w C w l w C w wψ ψ+ + − + − − + − =& && & & & & &  
          (2) 

Bogie pitch motion: 
1 1 1 2 1 1( ) ( ) ( )t t s f t f t w s r t r t w s f t f t wJ K l w l w K l w l w C l w l wψ ψ ψ ψ+ + − − − − + + −&& && &  

1 2( ) 0s r t r t wC l w l wψ− − − =&& &       (3) 
Front wheel vertical motion: 

1 1 1 1 1 1 1 1( ) ( ) ( ) 0w w s w t s w t s f t s f tM w C w w K w w C l K l P tψ ψ+ − + − − − + =&&& & &

          (4) 
Rear wheel vertical motion: 

2 1 2 1 2 1 1 2( ) ( ) ( ) 0w w s w t s w t s r t s r tM w C w w K w w C l K l P tψ ψ+ − + − + + + =&&& & &

         (5) 
Equations of rail track 

The equations of motion of the entire track system are 
derived upon integrating the equation of motion for the rail 
as an Euler beam with the differential equations of motions 
for the discrete sleeper and ballast supports. The deflection 
of the continuous rail can be derived from the partial 
differential equation for the Euler beam as:  

( ) ( ) ( ) ( )
4 2 2

'
4 2

1 1

, ,
( ) ( )

N
r r

r rsi i j j
i j

w x t w x t
EI m F t x x P t x x

x t
δ δ

= =

∂ ∂
+ = − − + −

∂ ∂ ∑ ∑
         (6) 

Where  N  is total number of sleepers considered in the 
model, k is the number of deflection modes considered for 
the rail beam and j is the number of wheelsets 
incorporated in the vehicle model, which represent the 
number of moving point loads acting on the beam. E is 
the elastic modulus of rail beam materials and I  is the 
second moment of area. The coordinate x  represents the 
longitudinal position of the beam with respect to the left 
end support of the rail beam. ix defines the position of the 

i th sleeper and ( )xδ is the Dirac delta function. ( )rsiF t  is 

force developed at the i th  rail/sleeper interface, given by  
( ) ( ) ( ) ( ) ( ), ,rsi pi r i si pi r i siF t K w x t w t C w x t w t⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦& &

         (7) 
The ( )'

jP t  defines the total vertical force acting at the j th 

wheel and rail interface. It comprises both the static vehicle 
load and the contact force ( )jP t , j =1, 2, such that: 

( ) ( )' [0.5( ) ]j j c t wP t P t M M M g= + + + ; j =1, 2 

The contact force ( )jP t is derived using the Hertzian 

contact model described in Eq. (11), such that: 
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 3/ 2( ) [ ( ) ( , ) ( )] ;j H wj r j jP t C w t w x t r t= − − j =1, 2 

Where 
HC  is Hertzian wheel/rail contact coefficient and 

( )jr t is the wheel flat function. 

The contact force diminishes when a loss of contact of the 
wheel with the rail is encountered, when 
[ ( ) ( , ) ( )] 0;wj r j jw t w x t r t− − ≤ j =1, 2 

 The rail beam deflection ( ),rw x t is evaluated 

through solution of Eq. (2.6) using the generalized 

coordinates method. The deflection ( ),rw x t is expressed 

by the product of the k th mode deflection mode 

( )kY x and the time coordinate ( )kq t . The equation of 
motion for the discrete sleeper and ballast masses are 
derived as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )si si p b si p b si b bi b siM w t C C w t K K w t C w t K w t+ + + + − −&& & &  

( ) ( ) ( ) ( )
1 1

0
K K

p k i k p k i k
k k

C Y x q t K Y x q t
= =

− − =∑ ∑&
;  1, 2,.....i N=  

          (8) 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2bi bi b f w bi b f w bi b si b siM w t C C C w t K K K w t C w t K w t+ + + + + + − −&& & &

 

( ) ( ) ( ) ( )( 1) ( 1) ( 1) ( 1) 0w b i w b i w b i w b iC w t K w t C w t K w t+ + − −− − − − =& & ; 

1, 2,.....i N=          (9)  
 The shear coupling between the first ballast mass and 
the beam support, and the last ballast mass and the beam 
support, however, are not considered in Eq. (9), i.e. 

0 0( ) 0;b bw t w= =& and 
( 1) ( 1)( ) ( ) 0.b N b Nw t w t+ += =&  

 The ballast force developed at the sleeper-ballast 
interface can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )sbi bi si bi bi si bi wi bi b i wi bi b iF t K w t w t C w t w t K w w C w w+ +⎡ ⎤ ⎡ ⎤= − + − + − + −⎣ ⎦ ⎣ ⎦& & & &

 
( ) ( )wi bi b i wi bi b iK w w C w w− −+ − + −& &       (10)  

 
Wheel-rail interaction 

Wheel-rail interface distinguishes railways from other 
forms of land transports. In order to simulate the wheel-rail 
interaction force, the contact between the wheel and rail 
must be established by a well-defined method, since an 
accurate solution of the rolling contact problem is quite 
complex. The essential characteristic of the wheel-rail 
contact is its extreme stiffness in vertical direction. The 
area of contact is generally very small, while the interface 
supports the traction, braking, and curving forces apart 
from the vertical forces. 
 The interaction between the vehicle and the track 
system is achieved at the wheel/rail interfaces through 
wheel/rail force compatibility. The wheel-rail contact has 
been widely described by the nonlinear Hertzian contact 
theory commonly used in the wheel/rail interaction 
problems1, 6, 8. According to the Hertzian contact theory, 
the wheel-rail contact force is related to the rail deflection 
in a nonlinear manner, such as: 

3/ 2( ) ( )HP t C z t= ∆            (11) 

Where  ( )z t∆  is the wheel-rail overlap in the vertical 
direction. In the absence of a wheel defect, the overlap is 
defined by the relative motion of the wheel with respect to 
the rail:  

   ( ) ( ) ( , ) ( )w rz t w t w x t r t∆ = − −      (12) 
 

Where ( )r t is the wheel flat function. ( )ww t  and 

( , )rw x t  are the wheel and rail deflections in vertical 
direction, respectively.  
 A haversine flat is expressed as: 

1 [1 cos(2 / )]
2 f fr D x Lπ= −       (13) 

Where 
fD is the flat depth, 

fL is the length of the flat, x  is 

the longitudinal coordinate of the contact point within the 
flat. 
 
 
ANALYSIS METHOD 

The track system model formulated in this study 
comprises both ODEs and PDE describing the deflection of 
the lumped sleeper and ballast masses, and the continuous 
rail, respectively. The PDE is expressed as ODEs by 
assuming a mode shape function. The Rayleigh-Ritz 
method is used to express the fourth order PDE describing 
the motion of the continuous rail by a series of second 
order ordinary differential equations in terms of the time 
coordinates. The resulting ODEs of the track and vehicle 
systems are than solved in time domain to obtained 
responses of individual components of the vehicle-track 
system model. The relative responses between the 
components are used to derive the dynamic interaction 
forces. The closed form of the solutions by using this 
method largely depends on the accurate assumption of the 
mode shape and the number of modes considered. In this 
study, a total of 100 modes of the rail beam are considered 
for analysis of the coupled vehicle-track system model.  
The deflection mode of continuous beam with simply 
supported boundary conditions can be derived from the 
Euler-Bernoulli equation of the beam. The deflection 
modes and the natural frequencies of an Euler beam inn the 
absence of sleeper supports and external loads have been 
well documented and can be expressed as6: 

( ) sink
k xY x

l
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
; and 

  2

k
r

k EI
l m
πω ⎛ ⎞= ⎜ ⎟

⎝ ⎠
,  k = 1, 2, 3……… K               (14) 

Where ( )kY x is the deflection mode, kω is the 

corresponding natural frequency and l is the beam length. 
The deflection response of the rail is then derived from : 

( )
1

, ( ) ( )
K

r k k
k

w x t Y x q t
=

=∑        (15) 

Where K is the number of modes considered. 
 
 The rail deflections in the vicinity of the contact 
points with the wheels are derived from: 

1
1

( , ) sin ( )
K

r k k
k

kw x t Y vt q t
l
π

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ; and 

2
1

( , ) sin ( ) ( )
K

r k t k
k

kw x t Y vt l q t
l
π

=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑     (16) 

Where t f rl l l= +  is the wheel base of the bogie. 

 
 The substitution of the rail deflection response from 
Eq. (15) together with the mode shape kY  in the PDE, Eq. 

(6) yields a set of ODEs in ( )q t , expressed as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

1 1 1 1

N K N K

k pi k i k i k k pi k i k i k
i k i kr

EI kq t C Y x Y x q t q t K Y x Y x q t
m l

πα α
= = = =

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑&& &
 

( ) ( ) ( ) ( ) ( )
2

'

1 1 1
( )

N N

pi k i si pi k i si j k Gj
i i j

C Y x w t K Y x w t P t Y xα α α
= = =

− − =∑ ∑ ∑&
  

       (17) 
Where (2 / )rm lα =  and k = 1, 2, 3……… K  
 The above equations incorporate the effects of sleeper 
supports through the restoring and dissipative forces 
developed by the rail pad in the vicinity of the sleeper 
support. The total force of the rail pad, attributed to rail 
deflections alone, can be further simplified as:    

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

N K N K

pi k i k i k pi k i k i k
i k i k

K Y x Y x q t C Y x Y x q t
= = = =

+∑ ∑ ∑ ∑ & = 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

N K N K

pi k i k i k pi k i k i k
i k i k

K Y x Y x q t C Y x Y x q t
= = = =

+∑ ∑ ∑ ∑ &  

        (18) 
As example, these forces associated with the K th mode 
( k K= ) can be derived from: 
 ( ) ( ) ( ) ( ) ( ) ( )

1 1

N N

pi k i k i k pi k i k i k
i i

K Y x Y x q t C Y x Y x q t
= =

+∑ ∑ & = 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 .........p K K K K K K K K N K NK q Y x Y x Y x Y x Y x Y x Y x Y x⎡ ⎤+ + + +⎣ ⎦
+ 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 ........p K K K K K K K K N K NC q Y x Y x Y x Y x Y x Y x Y x Y x⎡ ⎤+ + + +⎣ ⎦&
 

(19) 
 
 The equation of motion of the rail supported on 
discrete sleepers and railpads are formulated upon 
substituting for component of the railpad force, described 
above, in Eq. (17). These equations are summarized below, 
as example, 
For, 100k =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

100 100 100 100 100 100 100 100
1 1

100N N

pi i i pi i i
i ir

EIq t C Y x Y x q t q t K Y x Y x q t
m l

πα α
= =

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

∑ ∑&& &

( ) ( ) ( ) ( ) ( )
2

'
100 100

1 1 1
( )

N N

pi i si pi i si j k Gj
i i j

C Y x w t K Y x w t P t Y xα α α
= = =

− − =∑ ∑ ∑&
   

  (20) 
The deflection response of the rail is finally derived from 
summation of a total of 100 deflection modes, as: 

1 1 2 2 3 3 100 100( , ) ( ) ( ) ( ) ( ) ( ) ( ) ................................ ( ) ( )rw x t Y x q t Y x q t Y x q t Y x q t= + + + +       (21) 
 The equations of motion of the vehicle system 
described by Eqs. (1) to (5), and of the track system 
derived in Eqs. (6) to (9) and (17) together with the 
Hertzian nonlinear contact model in Eq. (11) describe the 
vertical dynamics of the coupled vehicle-track system. 
Detail derivation of the vehicle-track model and method of 
analysis can be found in11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Comparison of wheel-rail impact force response of 

the present model with that reported by Zhai et al.6. 

RESPONSE ANALYSES OF THE VEHICLE-TRACK 
SYSTEM 

The developed model is validated using the data 
reported by Zhai et al.6. In this reported study, a 10-DOF 
pitch plane model of the full car was considered with a 
three-layer model. The rail was modeled as an Euler-
Bernoulli beam. All the parameters of the vehicle, the 
track, and defect size considered in this validation are 
taken from Zhai et al.6, except for the primary suspension 
properties and Hertzian contact stiffness, which were not 
reported. These parameters were obtained for a typical 
wagon track system used in North America. The dynamic 
response of the entire vehicle-track system is evaluated 
under a constant speed of 27 km/h as reported by Zhai et 
al.6 in the presence of a 52.8 mm long and 1 mm deep flat 
in the leading wheel. The variation in the dynamic contact 
force obtained at the interface of the defective wheel and 
rail is evaluated and compared with those reported in6, as 
shown in Fig. 2. The simulation results were obtained 
under steady-state condition.  

It can be seen that the contact force response predicted 
by the current model agrees reasonably well with the 
response reported by Zhai et al.6. It should be noted that the 
reported study employed a 10 DOF pitch plane model of 
the entire car, while the present study considers only a 5-
DOF model of the quarter car. Despite this simplification, 
the current model yields nearly similar impact force 
response, which suggests negligible contributions due to 
the vehicle pitch. A reduced model would thus be 
sufficient for accurately predicting the dynamic contact 
force due to a wheel flat. The amplitude of impact force 
and the period of vibrations predicted by both models are 
in very good agreement. The peak impact force predicted 
by both models is in the order of 245 kN. The dominant 
period of oscillation of the contact force is approximately 
0.01 s for both models. The results attained from both the 
models suggest that this period of oscillation rapidly 
approaches to nearly 0.02 s after the excitation due to 
wheel flat has passed the contact region, although some 
differences in the responses become evident.  
 Figure 3 (a) further illustrates the front wheel-rail 
contact force response of the present model over a longer 
duration for examining the possible response when the 
excitation due to the flat is absent. The ratio of peak force 
to the static load is nearby 2.37. Figure 3 (b) shows the 
contact force response at flat-free rear wheel-rail contact 
point. The results clearly show significantly high contact 
force at the rear wheel-rail interface, even though the rear 
wheel is considered to be free of defects. The peak impact 
force caused by the rear wheel flat approaches 166.4 kN. 
The ratio of peak force to the static load is nearby 1.62. 
Unlike the impact force response at the front wheel 
contact, the impact force of the rear wheel exhibits a 
smaller magnitude peak prior to the sharp drop in contact 
force, which can be attributed to out-of-phase motion of 
the two wheel-rail contact points. The oscillations in the 
contact force of the rear wheel tend to diminished over a 
short duration of approximately 0.04 s. The wheel-rail 
contact force, however, continues to oscillate at a 
frequency near 56 Hz until an impact of the front wheel flat 
occurs during the subsequent cycle. The impact force 
developed at the perfect wheel-rail contact due to a flat in 
another wheel is also referred to as the ‘cross-wheel’ force, 
and has been attributed to side frame pitch12. 
 The results in Fig. 3 further show the sequence of 
events in terms of contact force and their frequency of 
oscillation, which can be explained in the following  
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          (a) front wheel-rail impact with flat 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                (b) flat-free rear wheel-rail impact 
 
Fig. 3: Time-history of impact force response predicted by      
           the current model: (a) front wheel-rail impact with  
           flat; and (b) flat-free rear wheel-rail impact (v = 27  
           km/h; fL = 52.8 mm; fD = 1 mm) 
 
manner. As the wheel flat enters the contact area, there is a 
sudden drop in the contact force followed by a large peak 
due to the wheel-rail impact. This referred to as P1 force in 
literature6, lasts for a duration of 0.008 s, which correspond 
to the duration of the flat in contact with the rail. The 
frequency of P1 can therefore be referred to as the 
excitation frequency due to the flat, and is a function of flat 
size and forward speed. The following sequence of peak 
force known as P2 force oscillates at a frequency of 125 
Hz. This is primarily due to oscillation of the rail on the 
support pads.  
 The validated vehicle-track system model is applied to 
investigate the dynamic contact force as well as dynamic 
responses of the components at a constant forward speed. 
The analyses are performed under a haversine wheel flat 
(

fL = 52 mm and 
fD = 0.4 mm). The type of flat 

considered closely meets the wheel removal  criterion 
recommended by a number of American and European 
railroad organizations, such as AAR13, Transport Canada14, 
Swedish Railway2, and UK Rail Safety and Standard 
Board15. 

The equations of motion for the vehicle-track model 
are solved for the track length involving 100 sleepers, and 
a forward speed 70 km/h. The simulations were performed 
were performed using a time step size of 0.000078 s, which 
is significantly smaller than the time required for the flat to  

Table 1: Nominal simulation parameters 
Sym. Parameter Value 
Mc Car body mass (quarter car) 19400 kg   
Mt Bogie mass (half) 500 kg   
Mw Wheel mass  500 kg   
Jt Bogie mass moment inertia  176 kg-m2 
Ks1 Primary suspension stiffness  788 MN/m 
Cs1 Primary suspension damping 3.5 kN-s/m 
Ks2 Secondary suspension stiffness  6.11 MN/m 
Cs2 Secondary suspension damping 158 kN-s/m 

lt Wheelset distance 1.25 m 
R Wheel radius 0.42 m   
Lf Flat length  52 mm 
Df Flat depth 0.4 mm 
CH Hertzian spring constant  87 GN/m3/2 

mr Rail mass per unit length  60.64 kg/m   
EI Rail bending stiffness 6.62 MN-m2  
Ms Sleeper mass  118.5 kg 
Mb Ballast mass  739 kg 
Kp Railpad stiffness 120 MN/m 
Kb Ballast stiffness  182 MN/m 
Kw Ballast shear stiffness 147 MN/m 
Kf Subgrade stiffness  78.4 MN/m 
Cp Railpad damping  75 kN-s/m 
Cb Ballast damping  58.8 kN-s/m
Cw Ballast shear damping 80 kN-s/m 
Cf Subgrade damping  31.15 kN-s/m 
ls Sleeper distance  0.6 m 
N No. of sleepers 100 

 
overcome the contact with the rail. The simulation 
parameters used for analysis are given in the Table 1, 
which represent those of a typical North American railroad 
car. 
 The high magnitude contact forces developed at the 
wheel-rail interface are transmitted to the vehicle 
components and track layers, which may cause 
components fatigue or failure. The transmission of contact 
force to the sideframe occurs through the bearing adapters. 
The deflections of wheel and side frame give rise to the 
primary suspension force, also referred to as bearing force, 
which is eventually transmitted to the car body. The 
magnitudes of bearing forces strongly depend upon the 
nature of flat, speed, wheel load and suspension properties. 
The variations in bearing force are investigated using the 
model parameters listed in Table 1 and a flat within the 
rear wheel (

fL = 52 mm; 
fD = 0.4 mm). The responses, 

evaluated under three different load conditions (W = 63, 
82, and 102 kN), are compared in Fig. 4. The bearing force 
tends to rapidly decrease from its static level of 100 kN as 
the wheel flat enters the wheel-rail contact region, as it was 
observed for the wheel-rail contact force in Fig. 3. Similar 
to the contact force, the bearing force increases to a high 
value of nearly 160 kN, although the rate of rise is 
considerably smaller than that of the contact force. The 
bearing force decays in an exponential manner, thereafter, 
which is attributed to the primary suspension damping.  
 The results further show that variations in the wheel 
load do not influence the oscillation frequency of the 
bearing force. The ratio of peak bearing force to static 
bearing force varies nonlinearly with the wheel load. These 
ratios for wheel loads of 102, 82 and 63 kN are obtained as 
1.59, 1.73, 1.93, respectively. The nonlinear variations in 
the peak bearing force with the wheel load are mostly 
attributed to the nonlinear variations in the peak wheel-rail 
impact force with the static wheel load, which is further 
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                 Fig. 4: Variations in the bearing force response due to a rear-wheel flat  as a function of static wheel load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Variations in railpad force due to a rear wheel flat 

as a function of static wheel load. 
 
attributed to the nonlinear wheel-rail contact model. The 
ratios of peak wheel-rail impact load to static wheel load 
were obtained as 1.77, 1.96, and 2.45 for static loads of 
102, 82 and 63 kN, respectively. 

The dynamic force developed by the discrete rail 
pads, also referred to as the reaction force at each rail-
sleeper interface, is further evaluated to study the nature of 
forces transmitted to different track layers. The dynamic 
rail pad force is computed from relative deflection of the 
rail and sleeper, using Eq. (7). As an example, the 
variations in the rail pad force developed at sleeper no. 22, 
due to a flat within the rear wheel, are illustrated in Fig. 5. 
The variations in the railpad force are investigated using 
the model parameters listed in Table 1 and a flat within the 
rear wheel (

fL = 52 mm; 
fD = 0.4 mm), and three different 

load conditions (W=63, 82, 102 kN) at a constant forward 
vehicle speed of 70 km/h. Figure 5 shows that as the wheel 
flat enters the wheel-rail contact region, the pad force 
rapidly decreases from its static level of 82.23, 66.88, and 
51.57 kN under static wheel loads of 102, 82 and 63 kN, 
respectively. The pad force then increases to peak value of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Variations in ballast force due to a rear wheel flat as 

a function of static wheel load. 
 

120.4, 104.9, and 91.64 kN, respectively. The ratios of the 
peak pad force to static pad force are obtained as 1.46, 
1.57, and 1.77 for static wheel load of 102, 82 and 63 kN, 
respectively. The figure further shows that the pad force 
gradually decreases after the impact, as the wheel moves 
away from the location of the sleeper. It can be seen that 
the variations in the wheel load do not influence the 
oscillation frequency of the pad force. The results also 
show that the magnitudes of pad forces are significantly 
smaller than those of the contact forces, which can be 
attributed to inertia force of the rail.   

The impact force developed at wheel-rail interface 
due to a wheel flat is also transmitted to the ballast blocks, 
which is ultimately transmitted to the ground. The force 
developed at the sleeper-ballast interface is known as 
ballast force. The magnitudes of ballast forces also depend 
upon the wheel load, ballast properties and the nature of 
the flat. The effect of wheel flat on dynamic ballast force is 
investigated in the presence of a single flat in the rear 
wheel. The resulting variations in the ballast force are 
shown in Fig. 6. The ballast force is computed by summing 
up the reaction forces obtained from a particular sleeper 
and the shear forces arising from couplings with the 
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adjacent ballast blocks, as shown in Eq. (10). The time 
histories of the ballast forces for ballast no. 22 under three 
different load conditions (W= 63, 82 and 102 kN) are 
shown in Fig. 6. The results suggest that variations in 
ballast forces are similar to those observed for the pad 
forces shown in Fig. 5. The peak magnitudes of the ballast 
forces, however, are considerably smaller than those of the 
pad forces. The peak values of forces are attained as 108.4, 
92.49 and 75.62 kN under static wheel loads of 102, 82 and 
63 kN, respectively. The ratios of peak to static ballast 
forces for wheel loads of 102, 82, and 63 kN are obtained 
as 1.32, 1.38, and 1.46, respectively. The normalized 
ballast forces relatively less sensitive to variations in the 
static wheel load in the range of variations considered. The 
figure further shows that the ballast force gradually 
decreases after the wheel impact, as the wheel moves away 
from the location of the ballast. The variations in the wheel 
loads do not show significant influence on the oscillation 
frequency of the ballast force, as observed for the wheel-
rail contact and bearing forces.   
 The deflection responses of different vehicle and track 
system components are further investigated to study the 
transmission of wheel flat-induced rail deflections to 
various vehicle components and track layers, as a vehicle 
moves over the track with a particular load and speed. 
Excessive deflections may cause fatigue damage of the 
vehicle-track components, especially the track layers 
leading to increase maintenance cost or track failure. The 
deflections of the vehicle and track components are 
evaluated under constant static wheel load of 102 kN in the 
presence of a rear wheel flat (

fL = 52 mm; 
fD = 0.4 mm).  

 Figure 7 and 8 illustrate the variations in 
displacements responses of wheel-rail contact points at 
front and rear wheels, respectively. The results show 
deflections of the wheel masses and deflections of rail at 
wheel-rail contact points. The application of the static 
wheel load causes the rail to deform downwards at the 
contact point. However, a relaxation of rail compression 
prior to the impact at the contact point is evident as the flat 
approaches the contact region, while the wheel moves 
downwards due to its flat geometry. This is followed by 
further compression of the rail due to impact force 
developed at the wheel-rail interface, as seen in Fig. 7. 
Subsequently, the rail profile tends to recover its steady 
value, while the deflection response exhibits oscillation 
near 56 Hz, which has been referred to as the coupled 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Time histories of vertical displacements of the rear 

wheel and rail in the presence of a flat 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Time histories of vertical displacements of front 
wheel (no flat) and rail at the wheel-rail contact 

point. 
 
vehicle-track system resonance2, 16. Both the wheel and rail 
displacement responses exhibit oscillation at the same 
frequency.  

The impact forces caused by the rear wheel flat also 
yields deflections of flat-free front wheel and the 
corresponding wheel-rail contact point, as shown in Fig. 8, 
although the peak deflections are relatively small. This is 
attributed to the influence of the cross wheel impact force. 
The results further show that peaks in deflections responses 
of the wheel and the rail occurs at same instants. 
Furthermore, in the absence of flat, the difference between 
the displacements of the wheel and the rail remains nearly 
constant over the entire revolution of the wheel.  

Fig. 9 (a) illustrates the variations in displacement 
response at a single point on the rail while flat (

fL = 52 

mm; 
fD = 0.4 mm) is assumed to exist in the rear wheel. 

Figures 9 (b) and (c) illustrate the resulting variations in 
displacement responses of the sleeper and ballast block (i= 
22) located beneath the point considered on the rail. The 
results clearly show the differences between peak 
deflections of the point on the rail, sleeper and ballast 
under the front and rear wheel contacts. The point on the 
rail undergoes a peak deflection of 1.58 mm under the front 
wheel contact, which increases to 1.715 mm under the rear 
wheel. Similarly, the peak deflections of the sleeper under 
front and rear wheel contacts are obtained as 0.88 mm and 
0.99 mm, respectively, while those of the ballast are 0.46 
mm and 0.5 mm. While the deflection response at the front 
wheel-rail contact point is affected by the rear-wheel flat, 
the effect is not evident in Fig. 9 (a) due to the relatively 
large ordinate scale. This effect, however, is evident in the 
ballast response as shown in Fig. 9 (c). The rail, sleeper, 
and ballast deflections exhibit small fluctuations every time 
as the deflections approach their steady values. These are 
attributed to impact forces occurring at adjacent locations 
of the rail. The results also show slight rail lift-off from the 
sleeper, sleeper lift-off from the ballast and ballast lift-off 
from the sub-grade occur in the order of 0.052 mm, 0.0229 
mm, and 0.0073 mm, respectively. These lift-offs can be 
attributed to the dynamics of the moving load that separate 
the track components from each other.   

The presence of a wheel flat, however, significantly 
influences both the bounce and pitch deflection responses 
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Fig. 9: Displacement responses evaluated at (a) a point on 

the rail; (b) sleeper; and (c) ballast beneath the rail 
point in the presence of a rear wheel flat 

 
 
of the bogie, as shown in Fig. 10. Both the vertical and 
pitch deflections of the bogie increase rapidly as the flat 
interacts with the rail. This is caused by relatively high 
magnitude bearing forces transmitted to the side frame, as 
observed in Fig. 4. As the flat moves away, the deflection 
responses oscillate around the static equilibrium near the 
frequency of 56 Hz. In the presence of a flat, the peak 
vertical deflection of the bogie increases from the static 
value of 1.816 mm to 1.904 mm. A rapid change in the 
pitch response of the bogie also occurs at the time when the 
defective wheel strikes the rail. The peak pitch angle, 
however, is relatively small, in the order of 0.8×10-6 rad. 
The results suggest important effects of wheel flat on the 
vertical deflection of the bogie mass, which would be 
further influenced by an array of factors related to 
operating variables and flat geometry.  

 
DISCUSSION 

The characteristic of the impact load due to a 
haversine wheel flat is investigated by a pitch plane vehicle 
model. The influence of the flat on various components of 
the vehicle and track is analyzed. This study illustrates that 
wheel flat has enormous influence on all the components of 
vehicle and track system except the car body. The current 
study also shows that flat present in one wheel has strong 
influence not only in contact forces but also in the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     (a) bounce motion(a) bounce motion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       (b) pitch motion. 
 
Fig. 10: Variation in the bounce and pitch responses of the 

bogie in the presence of a rearwheel flat (
fL = 52 

mm; 
fD = 0.4 mm): (a) bounce motion; (b) pitch 

motion. 
 
 

displacements responses. The investigations of the wheel-
rail impact loads, bearing, railpad, and ballast forces due to 
a haversine wheel flat as a function of the static wheel load 
show that the magnitudes of these transmitted forces 
increase considerably under a flat-induced excitation, 
which may cause rapid fatigue of the vehicle and track 
components. The magnitudes of these impact forces could 
be approaches twice the static load under medium wheel 
loads. The results also suggested significant influences of 
the wheel flat on displacement responses of the vehicle and 
track system components except for the low natural 
frequency car body. The study also revealed that a flat in 
one of the bogie wheels would also influence the forces 
developed at the adjacent wheel-rail contact point. A 
defective wheel may thus cause damage to the wheels of 
the adjacent wheelset. The magnitude of this cross-wheel 
force depends on the vehicle, track properties, and the flat 
geometry. It is shown that a flat in a wheel not only affects 
the wheel-rail deflections but also the deflections of the 
sleepers and the ballast. Furthermore, a certain amount of 
sleepers, and ballasts lift-off occur due to the dynamics of 
vehicle’s moving load that might separate the track 
components from each other. This amount of lift-off can 
vary depending on the speed and positions of the loads, 
sleepers, and ballasts. 
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