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Abstract: The present numerical simulation is analyzed the Magnetohydrodynamic natural convection flow and 

heat transfer along a uniformly heated vertical wavy surface in presence of heat generation/absorption with 

temperature dependent variable viscosity. Using the appropriate transformations the governing boundary layer 

equations are reduced to non-dimensional forms. The resulting nonlinear system of partial differential 

equations are mapped into the domain of a vertical flat plate and then solved numerically applying implicit 

finite difference method together with Keller-box scheme. The solutions are expressed in terms of the skin 

friction coefficient, the rate of heat transfer, the streamlines as well as the isotherms over the whole boundary 

layer. The implications of heat generation/absorption parameter (Q) and viscosity parameter (ε) on the flow 

structure and heat transfer characteristics are investigated in detail while, Prandtl number (Pr), magnetic 

parameter (M) and the amplitude-to-length ratio of the wavy surface (α) are considered fixed. Comparison with 

previously published work is performed and is found to be in good agreement.   
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INTRODUCTION 

The characteristics of natural convection flow of 

electrically conducting fluid in the presence of heat 

generation/absorption on magnetic field along a 

wavy surface is important from the technical point of 

view and such type of problems have received much 

attention of many researchers. If the surface is 

roughened the flow is disturbed by the surface and 

this alters the rate of heat transfer. Laminar natural 

convection flow from irregular surfaces can be used 

for transferring heat in several heat transfer devices, 

for examples, flat-plate solar collectors, flat-plate 

condensers in refrigerators, heat exchanger and 

geothermal reservoirs. The viscosity of the fluid to be 

proportional to a linear function of temperature, two 

semi-empirical formulae which was proposed by 

Charraudeau [1]. Yao [2–3] first investigated the 

natural convection heat transfer from an isothermal 

vertical wavy surface and used an extended Prantdl’s 

transposition theorem and a finite-difference scheme. 

He proposed a simple transformation to study the 

natural convection heat transfer for an isothermal 

vertical sinusoidal surface. These simple coordinate 

transformations method to change the wavy surface 

into a flat plate. Transient free convection flow with 

temperature dependent viscosity in a fluid saturated 

porous media has shown by Mehta and Sood [4]. As 

per their investigation the flow characteristics 

substantially change when the effect of temperature 

dependent viscosity considered. Moulic and Yao [5] 

investigated natural convection along a wavy surface 

with uniform heat flux. The study of heat generation 

or absorption in moving fluids is important in 

problems dealing with chemical reactions and those 

concerned with dissociating fluids. Possible heat 

generation effects may alter the temperature 

distribution; consequently, the particle deposition 

rate in nuclear reactors, electronic chips and 

semiconductor wafers. In fact, the literature is replete 

with examples dealing with the heat transfer in 

laminar flow of viscous fluids. Vajravelu and 

Hadjinolaou [6] studied the heat transfer 

characteristics in the laminar boundary layer of a 

viscous fluid over a stretching sheet with viscous 

dissipation or frictional heating and internal heat 

generation. In this study they considered that the 

volumetric rate of heat generation, q  [
3/ mW ], 

should be qm = Q0(T- T), for   TT  and equal to 

zero for  TT , where 0Q  is the heat 

generation/absorption constant. The above relation 

explained by Vajravelu and Hadjinolaou [6], is valid 

as an approximation of the state of some exothermic 

process and having T  as the onset temperature. 

When the inlet temperature are not less than T they 

used qm = Q0(T- T). The effect of temperature 

dependent viscosity on the free convective laminar 

boundary layer flow past a vertical isothermal flat 

plate in the region near the leading edge have been 
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studied by Kafoussius and Williams [7]. Alam et al. 

[8] considered the problem of free convection from a 

wavy vertical surface in presence of a transverse 

magnetic field using Keller box method. They used a 

sinusoidal surface to elucidate the effects of magnetic 

field and the amplitude of the wavy surface on the 

velocity and temperature fields as well as on the local 

rate of heat transfer. They found that the effect of the 

magnetic parameter was to decrease the velocity 

profiles and to increase the temperature profiles and 

the amplitude of the sinusoidal surface results in 

decreasing the heat transfer rate. The combined 

effects of thermal and mass diffusion on the natural 

convection flow of a viscous incompressible fluid 

along a vertical wavy surface investigated by 

Hossain and Rees [9]. The effects of waviness of the 

surface on the heat and mass flux distributions in 

combination with the species concentration for a 

fluid having Prandtl number equal to 0.7 have been 

studied in that paper. The natural convection flow 

past a permeable wedge for the fluid having 

temperature dependent viscosity and thermal 

conductivity have been investigated by Hossain et al. 

[10]. Cheng [11] studied the natural convection heat 

and mass transfer near a vertical wavy surface with 

constant wall temperature and concentration in a 

porous medium. The problem of natural convection 

of fluid with temperature dependent viscosity along a 

heated vertical wavy surface have been studied by 

Hossain et al. [12]. Molla et al. [13] numerically 

investigated natural convection flow along a vertical 

wavy surface with uniform surface temperature in 

presence of heat generation/absorption. Mamun et al. 

[14] considered MHD–conjugate heat transfer 

analysis for a vertical flat plate in presence of viscous 

dissipation and heat generation. Molla et al. [15] also 

investigated natural convection laminar flow with 

temperature dependent viscosity and thermal 

conductivity along a vertical wavy surface. 

Numerical study on a vertical plate with variable 

viscosity and thermal conductivity has been 

investigated by Palani and Kim [16]. Very recently, 

Parveen and Alim [17] studied the effect of 

temperature dependent variable viscosity on 

magnetohydrodynamic natural convection flow along 

a vertical wavy surface. The above literature survey 

shows that heat generation/absorption effect on 

magnetic field with temperature dependent viscosity 

natural convection flow along wavy surface has not 

been well investigated.  

In this current study the intensity of magnetic field 

natural convection flow along a vertical wavy surface 

in presence of heat generation/absorption with 

temperature dependent variable viscosity along a 

uniformly heated vertical wavy surface is studied. 

The boundary layer equations are reduced to 

dimensionless partial differential forms. The results 

are shown in terms of parametric presentations on the 

surface shear stress in terms of local skin friction and 

the rate of heat transfer in terms of local Nusselt 

number, the streamlines as well as the isotherms for 

various pertinent dimensionless parameters.  

 

MATHEMATICAL FORMULATION OF THE 

PROBLEM   
Consider the steady laminar two dimensional natural 

convection boundary layer flow of an electrically 

conducting viscous and incompressible fluid in 

presence of heat generation/absorption with variable 

viscosity along a vertical wavy surface. The surface 

temperature of the vertical wavy surface Tw is 

uniform, which is greater than the ambient 

temperature T. A uniform magnetic field of strength 

0 is imposed along the y -axis i.e. normal direction 

to the surface and x  -axis is taken along the surface. 

The boundary layer analysis outlined below allows 

)(x  being arbitrary, but our detailed numerical 

work assumed that the surface exhibits sinusoidal 

deformations. The wavy surface may be described by 











L

xn
xyw


 sin)(  (1) 

where L is the wave length associated with the wavy 

surface. 

The geometry of the wavy surface and the two-

dimensional cartesian coordinate system are shown 

in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The coordinate system and the physical 

model 

 

The governing equations of such flow of magnetic 

field in presence of heat generation/absorption with 

viscosity variation along a vertical wavy surface 

under the usual Boussinesq approximations can be 

written in a dimensional form as: 
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where ),( yx  are the dimensional coordinates along 

and normal to the tangent of the surface and ),( vu  

are the velocity components parallel to ),( yx , 

)//( 22222 yx   is the Laplacian operator, 

g is the acceleration due to gravity, p  is the 

dimensional pressure of the fluid,  is the density, 0 

is the strength of magnetic field, 0  is the electrical 

conduction, k is the thermal conductivity of the fluid, 

 is the coefficient of thermal expansion, (T) is the 

dynamic viscosity of the fluid in the boundary layer 

region depending on the fluid temperature,  ( = /) 

is the kinematics viscosity and Cp is the specific heat 

due to constant pressure. The amount of heat 

generated or absorbed per unit volume is Q0(T- T), 

Q0 being a constant, which may take either positive 

or negative values. The source term represents the 

heat generation when 00 Q and the heat absorption 

when .00 Q  

The boundary conditions relevant to the above 

problem are 

)(,0,0 xyyatTTvu ww   (6a) 

  yasppTTu ,,0  (6b) 

where Tw is the surface temperature, T is the 

ambient temperature of the fluid and p is the 

pressure of fluid outside the boundary layer. 

The variable viscosity chosen in this study which is 

introduced by Charraudeau [1] and used by Hossain 

et al. [12] as follows: 
*[1 ( )]T T       (7) 

where μ is the viscosity of the ambient fluid and 
* is a constant evaluated at the film temperature of 

the flow )(21  TTT wf
.   

Following Yao [2], we now introduce the following 

nondimensional variables: 

4

1

, Gr
L

y
y

L

x
x


 , pGr

L
p 1

2

2



 

 
1 1

2 4, x

L L
u Gr u v Gr v u

 


 

 

 

    

3

2

( )
, w

x

g T Td d
Gr L

dx dx

 





   , 









TT

TT

w

  

(8) 

where  is the dimensionless temperature function 

and  (= /) is the kinematic viscosity. Introducing 

the above dimensionless dependent and independent 

variables into Eqs. (2)–(5), the following 

dimensionless form of the governing equations are 

obtained after ignoring terms of smaller orders of 

magnitude in Gr, the Grashof number defined in (8). 
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In the above equations Pr, Q, ε and M are 

respectively known as the Prandtl number, heat 

generation/absorption parameter, viscosity variation 

parameter and magnetic parameter, which are 

defined as  

k
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It can easily be seen that the convection induced by 

the wavy surface is described by Eqs. (9)–(12). We 

further notice that, Eq. (11) indicates that the 

pressure gradient along the y-direction is )( 4
1

GrO , 

which implies that lowest order pressure gradient 

along x -direction can be determined from the 

inviscid flow solution. For the present problem this 

pressure gradient ( 0 xp ) is zero. Eq. (11) 

further shows that ypGr  /4
1

 is )1(O  and is 

determined by the left-hand side of this equation. 

Thus, the elimination of yp  /  from Eqs. (10) and 

(11) leads to 
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The corresponding boundary conditions for the 

present problem then turn into  
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Now we introduce the following transformations to 

reduce the governing equations to a convenient form: 
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where f(η) is the dimensionless stream function, η is 

the pseudo similarity variable and ψ is the stream 

function that satisfies the continuity equation and is 

related to the velocity components in the usual way 

as  

x
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Introducing the transformations given in Eq. (15) 

into Eqs. (13) and (12) are transformed into the new 

co-ordinate system. Thus the resulting equations are  
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The boundary conditions as mentioned in Eq. (14) 

then take the form given below: 
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LOCAL SKIN FRICTION COEFFICIENT AND 

THE LOCAL RATE OF HEAT TRANSFER  

The quantities of physical interested, namely, the 

shearing stress w in terms of the skin friction 

coefficient Cfx and the rate of heat transfer in terms of 

Nusselt number Nux are prescribed by: 
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Using the transformations (15) and Eq. (21) into Eq. 

(20), the local skin friction coefficient Cfx and the 

rate of heat transfer in terms of the local Nusselt 

number Nux takes the following form: 
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METHOD OF SOLUTION 

The transformed boundary layer equations solved 

numerically with the help of implicit finite difference 

method together with the Keller-Box scheme [18]. 

To begin with the partial differential equations are 

first converted into a system of first order differential 

equations. Then these equations are expressed in 

finite difference forms by approximating the 

functions and their derivatives in terms of the center 

differences. Denoting the mesh points in the x and -

plane by xi andj where i = 1, 2 ,.…, M and j = 1, 

2,…,N, central difference approximations are made, 

such that those equations involving x explicitly are 

centered at (xi-1/2 ,j-1/2) and the remainder at (xi,j-1/2), 

where j-1/2 = 1/2(j +j-1) etc. The above central 

difference approximations reduce the system of first 

order differential equations to a set of non-linear 

difference equations for the unknown at xi in terms of 

their values at xi-1. The resulting set of non-linear 

difference equations are solved by using the 

Newton’s quasi-linearization method. The Jacobian 

matrix has a block-tridiagonal structure and the 

difference equations are efficiently solved using a 

block-matrix version of the Thomas algorithm. In the 

program test, a finer axial step size is tried and find 

to give acceptable accuracy. A uniform grid of 201 

points is used in x- direction with  x = 0.05, while a 

non-uniform grid of 76 points lying between η = 0.0 

and 10.017 is chosen. Grid points are concentrated 

towards the heated surface in order to improve 

resolution and the accuracy of the computed values 

of the surface shear stress and rate of heat transfer. 

During the program test, the convergent criteria for 

the relative errors between two iterations are less 10-

5. It means that iterative procedure is stopped when 

the maximum change between successive iterates is 

less then 10-5.  

 

RESULTS AND DISCUSSION 

The problem of MHD natural convection flow of a 

viscous incompressible fluid in presence of heat 

generation/absorption with variable viscosity along a 

vertical wavy surface with uniform surface 

temperature has been investigated. In this section, 

numerical results of the skin friction coefficient Cfx, 

the rate of heat transfer in terms of the Nusselt 

number Nux, the streamlines and the isotherms are 

obtained for various values of the viscosity parameter 

ranging from ε = 0.0 (constant viscosity) to 15.0, 

heat generation parameter Q = 0.0 to 1.0 and heat 

absorption parameter Q = 0.0 to -0.6 while magnetic 

parameter M = 0.5, the amplitude-to-length ratio of 

the wavy surface  = 0.3 and Pr = 0.73 which 

correspond to the air at 21000K are fixed. 

The analysis of the effect of heat 

generation/absorption parameter Q on the local skin 

friction coefficient Cfx and the rate of heat transfer in 

terms of the local Nusselt number Nux against x from 

the wavy surface while  = 0.3, M = 0.5, ε = 5.0 and 

Pr = 0.73 are illustrated in Figs. 2 and 3 respectively. 

From Fig. 2, it is observed that the skin friction 

coefficient significant increases along the upstream 

direction of the surface and the rate of heat transfer 

from the heated surface decreases with the increase 

of the heat generation parameter Q. Heat generation 

mechanism creates a layer of hot fluid near the 

surface and finally the resultant temperature of the 

fluid exceeds the surface temperature. For this reason 

the rate of heat transfer in terms of the local Nusselt 

number from the surface decreases. Owing to the 

enhanced temperature, the viscosity of the fluid 

increases and the corresponding local skin friction 

coefficient increases. On the other hand, the presence 

of heat absorption (Q < 0) creates a layer of cold 

450



 

Journal of Mechanical Engineering, Vol. ME 42, No. 1, December 2012 
Transaction of the Mech. Eng. Div., The Institution of Engineers, Bangladesh 

1 

fluid adjacent to the heated surface and therefore the 

rate of heat transfer in terms of the local Nusselt 

number from the surface increases. The skin friction 

coefficient decreases along the downstream direction 

of the surface in this case. The amplitude of the skin 

friction coefficient for the heat generation case is 

strongly higher than that of the skin friction 

coefficient for heat absorption case. 

The skin friction coefficient Cfx and local rate of heat 

transfer Nux for influence of viscosity parameter ε = 

(0.0, 4.0, 8.0, 10.0 and 15.0) for heat generation case 

Q = 0.4, M = 0.5,  = 0.3 and Pr = 0.73 are 

displayed by Figs. 4(a) and 4(b). It is noted that an 

increase in the value of variable viscosity variation 

parameter ε, the skin friction coefficient increases 

monotonically along the upstream direction of the 

surface and to decrease of the heat transfer rates. 

Here it is concluded that for high viscous fluid the 

skin friction is higher and the corresponding rate of 

heat transfer is slow. The maximum values of local 

skin friction coefficient Cfx are 0.96896 and 23.13310 

for ε = 0.0 and 15.0 respectively which occur at the 

different values of x. Finally it is seen that the local 

skin friction coefficient increases by approximately 

96% as ε changes from 0.0 to 15.0.  
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Figure 2. Variation of (a) skin friction coefficient Cfx 

and (b) rate of heat transfer Nux against x for different 

values of heat generation parameter Q while Pr  = 

0.73,  = 0.3, M = 0.5 and ε = 5.0. 

The influence of heat generation/absorption 

parameter Q on the formation of streamlines which 

are plotted for  = 0.3, M = 0.5, ε = 5.0 and Pr = 0.73 

are depicted by the Fig. 5. It is noted that, in the case 

of heat absorption the maximum value of, that is, 

max is 1.37 for Q = - 0.4 and for heat generation case 

the maximum values of, that is, max is15.28 for Q 

= 0.4 and for Q = 1.0 the value of max is 26.64. It is 

concluded that the velocity distribution of the fluid 

flow for the case of heat generation is higher than 

that of the heat absorption case.   

Fig. 6 deals with the effect of heat 

generation/absorption parameter Q on the isotherms 

profile which are plotted for  = 0.3, M = 0.5, ε = 5.0 

and Pr = 0.73. In the presence of heat generation 

effect (Q > 0), the thermal state of the fluid 

increases, causing the thermal boundary layer 

becomes thicker. On the other hand, an opposite 

situation is observed on the temperature field within 

the boundary layer in the case of heat absorption.  
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Figure 3. Variation of (a) skin friction coefficient Cfx 

and (b) rate of heat transfer Nux against x for different 

values of heat absorption parameter Q while Pr  = 

0.73,  = 0.3, M = 0.5 and ε = 5.0. 
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Figs. 7 and 8 illustrate the effect of viscosity 

parameter ε on the development of streamlines and 

isotherms profile which are plotted for the amplitude-

to-length ratio of the wavy surface  = 0.3, Prandtl 

number Pr = 0.73, M = 0.5 and Q > 0 (Q = 0.4). 

From Fig. 7, it is seen that owing to the effect of 

variable viscosity, the flow rate in the boundary layer 

decreases. The maximum values of , that is, max 

are 15.24 and 14.44 for viscosity parameter ε = 0.0 

and 15.0 respectively. From Fig. 8, it is observed that 

temperature dependent viscosity affect the isotherms 

and leads to thicker the thermal boundary layer. 

Finally it is concluded that the effect of viscosity 

parameter the velocity of the fluid flow decreases 

and temperature distribution within the boundary 

layer increases. 
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Figure 4. Variation of (a) skin friction coefficient Cfx 

and (b) rate of heat transfer Nux against x for different 
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0.73.   
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Figure 5. Streamlines for (a) Q = -0.4 (b) Q = 0.0 (c) 

Q = 0.40 (d) Q = 1.0 while Pr = 0.73, M = 0.5, ε = 

5.0 and  = 0.3.   
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Figure 6. Isotherms for (a) Q = -0.4 (b) Q = 0.0 (c) Q 

= 0.40 (d) Q = 1.0 while Pr = 0.73, M = 0.5, ε = 5.0 

and  = 0.3.   
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Figure 7. Streamlines for (a) ε = 0.0 (b) ε = 4.0 (c) ε 

= 10.0 (d) ε = 15.0 while Pr = 0.73, M = 0.5, Q = 0.4 

and  = 0.3.   
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Figure 8. Isotherms for (a) ε = 0.0 (b) ε = 4.0 (c) ε = 

10.0 (d) ε = 15.0 while Pr = 0.73, M = 0.5, Q = 0.4 

and  = 0.3.   

 

COMPARISON WITH PREVIOUS WORK AND 

PROGRAM VALIDATION 

A comparison of the present numerical results of the 

skin friction coefficient, f (x,0) and the heat transfer, 

- (x,0) with the results obtained by Hossain et al. 

[12] are depicted in Table 1. Here, the magnetic 

parameter M, viscosity variation parameter ε and heat 

generation/absorption parameter Q are ignored with 

different values of Prandtl number Pr = (1.0, 10, 25.0 

and 100.0) are chosen. Excellent agreement is 

achieved with the present results and the numerical 

results of Hossain et al. [12]. These validations boost 

the confidence in the numerical code to carry on with 

the above stated objectives of the current 

investigation. 

 

Table 1: Comparison of the present numerical results 

of skin friction coefficient, f (x,0) and the heat 

transfer, - (x,0) with Hossain et al. [12] for the 

variation of Prandtl number Pr while M = 0.0, ε = 

0.0, Q = 0.0 with  = 0.1. 
 

Pr f (x,0) - (x,0) 

Hossain 

et al. 

[12] 

Present 

work 

Hossain 

et al. 

[12] 

Present 

work 

1.0 0.908 0.91084 0.401 0.39914 

10.0 0.591 0.59482 0.825 0.82315 

25.0 0.485 0.48910 1.066 1.06405 

50.0 0.485 0.41880 1.066 1.28351 

100 0.352 0.35690 1.542 1.54198 
 

 

CONCLUSION 

The effect of heat generation/absorption on MHD 

natural convection flow with temperature dependent 

viscosity along a uniformly heated vertical wavy 

surface has been analyzed. The effects of pertinent 

parameters on flow and heat transfer characteristics 

are discussed in detail. The results of the numerical 

analysis lead to the following conclusions: 

 The skin friction coefficient increases 

noticeably and the rate of heat transfer 

decreases in the case of heat generation. For 

this case, the buoyancy force increases that 

increase the flow rate in the boundary layer. 

For the heat absorption case, the opposite 

phenomenon occurs when the axial distance 

variable x increases. 

 The velocity and thermal boundary layer 

grow thick substantially for the effect of 

heat generation. But the opposite results 

obtained in the case of heat absorption. 

 Increasing values of temperature dependent 

viscosity variation parameter ε, the skin 

friction coefficient significantly increases 

and the local rate of heat transfer decreases 

in the downstream region.  

 The velocity of the fluid flow decreases and 

the temperature distribution of the fluid flow 

within the boundary layer significantly 

increase for increasing values of ε. 
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