

EFFECT OF DIABETES MELLITUS ON CLINICAL OUTCOMES AND ST SEGMENT RESOLUTION IN PATIENTS WITH ST SEGMENT ELEVATION MYOCARDIAL INFARCTION TREATED WITH STREPTOKINASE

Shahriar Iqbal^{1*}, M Saiful Bari², NazbinAkter Rubi³

OPEN ACCESS

Reviewed by

Ahmed Imran

Cumilla Medical College,
Cumilla Bangladesh.

Nargis Akter

Dhaka Medical College,
Dhaka, Bangladesh

*Correspondence:

Shahriar Iqbal

Email: shahriariqbal3101@gmail.com,
Orcid ID: <https://orcid.org/0009-0008-5954-0681>

Received: 04.12.2025

Accepted: 30.12.2025

Published: January 2026

Cite this article:

Iqbal S, bari MS, Rubi NA. Effect of Diabetes Mellitus on Clinical Outcomes and ST Segment Resolution in Patients with ST Segment Elevation Myocardial Infarction Treated with Streptokinase. *J Med Coll Women Hosp.* 2026; 22(1):149-155.

ABSTRACT

Background: Diabetes mellitus (DM) has a major impact on clinical outcomes for coronary artery disease (CAD), which continues to be a major source of morbidity and mortality worldwide. Diabetes mellitus (DM) worsens atherosclerosis and hinders myocardial recovery in patients with ST-segment elevation myocardial infarction (STEMI), which may have an impact on the results of streptokinase thrombolysis. **Aim:** The study aimed to examine the clinical outcomes and ST-segment resolution in diabetic STEMI patients receiving streptokinase treatment patients. **Materials and Method:** This cross-sectional study examined the clinical outcomes and ST-segment resolution of 50 diabetic and 50 non-diabetic STEMI patients receiving streptokinase treatment at Mymensingh Medical College Hospital between December 2016 and November 2017. Direct interviews, Electrocardiographs (ECGs), echocardiograms, and laboratory tests were all used in the data collection process. There were three categories for ST-segment resolution: unsuccessful (<30%), partial (30–70%), and complete (>70%). The statistical analysis was conducted using SPSS version 20, with a significance threshold of $p<0.05$. **Results:** The diabetes group had greater rates of unsuccessful resolution (42% vs. 12%, $p=0.001$) and considerably lower rates of complete ST-segment resolution (28% vs. 52%, $p=0.001$). Diabetics had a considerably reduced mean left ventricular ejection fraction (LVEF) (46.54 ± 10.17 vs. 51.64 ± 8.48 , $p=0.008$). Longer hospital stays (60% vs. 40%, $p=0.006$) and cardiogenic shock (44% vs. 24%, $p=0.005$) were more common in diabetics. Overall, diabetic patients fared poorly, even though anterior myocardial infarction was the most frequent site in both groups. These results are consistent with earlier studies that linked diabetes mellitus to worse cardiac recovery and systemic outcomes following thrombolysis. **Conclusion:** In STEMI patients receiving streptokinase treatment, diabetes mellitus substantially compromises ST-segment resolution, myocardial function, and clinical results. For diabetes patients to recover as best they can, tailored interventions are crucial. To confirm these results and investigate more sophisticated diagnostic and treatment strategies, more multicenter research is required.

Keywords: Coronary artery disease, ST-segment elevation myocardial infarction, Diabetes mellitus, Streptokinase.

INTRODUCTION

Coronary artery disease (CAD) is a pathological condition marked by the buildup of atheromatous plaques in the coronary artery walls, resulting in diminished blood flow to the heart.

1* Department of Cardiology, Ashiyan Medical College Hospital, Dhaka, Bangladesh.

Email: shahriariqbal3101@gmail.com,

Orcid ID: <https://orcid.org/0009-0008-5954-0681>, [Address of correspondence]

2 Department of Cardiology, Mymensingh Medical College, Mymensingh, Bangladesh.

3 Department of pathology, Shahid Tajuddin Ahamed Medical College Hospital, Gazipur, Bangladesh.

It has emerged as a significant global health issue, representing the foremost cause of illness and mortality globally^{1,2}. Acute coronary syndrome (ACS), encompassing diseases such as ST-Segment Elevation Myocardial Infarction (STEMI), Non-STEMI, and Unstable Angina (UA), accounts for a substantial percentage of cardiovascular mortality in both industrialized and developing nations. By 2020, ischemic heart disease (IHD) is anticipated to be the primary cause of global disability³. In Bangladesh, CAD has emerged as a significant strain on healthcare services, with research indicating a prevalence rate of 6.56 per 1,000 individuals^{4,5}, and acute myocardial infarction identified as a primary cause of mortality, particularly among younger populations^{6,7}.

Diabetes mellitus (DM) is a significant risk factor for CAD, since it substantially contributes to the establishment and progression of atherosclerosis, hence serving as a robust predictor of CAD⁸. Diabetes, whether of type 1 or type 2, expedites the advancement of atherosclerosis and heightens the likelihood of coronary incidents. Diabetic individuals frequently exhibit silent myocardial ischemia, lacking awareness of ischemic discomfort, which markedly increases the risk of sudden cardiac death. Research indicates that diabetes roughly doubles the mortality risk after an acute myocardial infarction in comparison to non-diabetic individuals⁹.

The primary treatment objective in STEMI care is the prompt recanalization of the infarct-related artery, generally accomplished via thrombolysis or percutaneous coronary intervention (PCI). Streptokinase is one of the most frequently utilized thrombolytic medicines. The effectiveness of thrombolytic therapy can be evaluated by analyzing ST segment resolution on a 12-lead electrocardiogram (ECG) 90 minutes post-streptokinase infusion¹⁰. Successful epicardial recanalization is essential; nevertheless,

microvascular flow, shown by ST segment resolution, offers significant prognostic insights, demonstrating myocardial healing that extends beyond the findings of coronary angiography¹¹.

This study investigates the impact of diabetes mellitus on clinical outcomes and ST segment resolution in patients with ST segment elevation myocardial infarction treated with streptokinase. This study aims to ascertain if diabetes affects the degree of ST segment resolution, a critical marker of cardiac reperfusion and recovery after thrombolytic therapy.

MATERIALS AND METHOD

From December 2016 to November 2017, the Department of Cardiology at Mymensingh Medical College Hospital in Mymensingh carried out this descriptive cross-sectional study. With or without diabetes mellitus, the study sought to assess the clinical outcomes and ST segment resolution in individuals suffering from ST elevation myocardial infarction (STEMI). Purposive sequential sampling was used to choose 50 diabetic and 50 non-diabetic STEMI patients out of the 100 patients that were enrolled.

All STEMI patients who presented within 12 hours of the beginning of chest discomfort and were deemed eligible for thrombolysis met the inclusion criteria. Patients with left bundle branch block, previous coronary procedures, anticoagulant or antiplatelet medication, thrombolysis contraindications, or refusal to participate were among the exclusion criteria.

ST elevation at the J point in at least two contiguous leads on the ECG was used to diagnose STEMI. Resolution was classified as complete, partial, or failed based on the percentage decrease in ST elevation following 90 minutes of streptokinase infusion. ST segment measurement was done manually using calipers. Lead involvement in the ECG was used to identify the infarction site.

Direct in-person interviews and blood samples for laboratory tests including Troponin-I, lipid profiles, blood glucose, and glycated hemoglobin (HbA1c) were among the methods used to collect data. For additional evaluation, ECGs and echocardiograms were also conducted. Hypertension, diabetes, smoking, family history, lipid profile, Troponin-I, blood sugar, HbA1c, ST segment resolution, ST segment elevation, and left ventricular ejection fraction (LVEF) were among the factors included in the study. The study was approved by the Ethical Review Committee of Mymensingh Medical

College Hospital. Written informed consent was obtained from all patients or their legal guardians. Confidentiality and anonymity were strictly maintained.

SPSS version 20 was used to analyze the data; continuous variables were represented by mean and standard deviation, while categorical variables were represented by frequency and percentage. Student's t-test and chi-square tests were used for statistical analysis; a *p*-value of less than 0.05 is regarded as statistically significant.

RESULTS

Table 1: Distribution of the respondents according to their age and sex

Age in years	Group-A		Group-B		<i>p</i> value
	STEMI with DM (n=50)	Count	STEMI Without DM (n=50)	Count	
35-45	7	14.0	14	28.0	
46-55	17	34.0	16	32.0	
56-65	10	20.0	8	16.0	0.368NS
>65	16	32.0	12	24.0	
Mean±SD	59.44±9.95		54.52±11.95		
Male	29	58.0	44	88.0	0.001**
Female	21	42.0	6	12.0	

NS means not-significant (*p*>0.05); ** means significant at 1% level (*p*<0.01); Data were analyzed using chi-square test; n-number of patients in each group.

Table 1 shows that the mean age was 59.44 in Group-A and 54.52 in Group-B. The difference between groups was not statistically significant (*p*>0.05). Data were evaluated using t-test. The highest number of respondents were male in both groups (Group-A: 58%; Group-B: 88%) male. Two groups showed a significant difference (*p*<0.05).

Table 2: Distribution of the respondents according to risk factors

Risk factors	Group-A		Group-B		<i>P</i> value
	STEMI with DM (n=50)	Count	STEMI without DM (n=50)	Count	
Smoking	Yes	36	72.0	24	0.005**
	No	14	28.0	26	
HTN	Yes	33	66.0	18	0.001**
	No	17	34.0	32	
Dyslipidemia	Yes	35	70.0	20	0.003**
	No	15	30.0	30	
Family History of pre mature of CAD	Yes	15	30.0	12	0.499 NS
	No	35	70.0	38	

** means significant at 1% level (*p*<0.01); NS means not-significant (*p*>0.05); n=number of patients in each group

DM effect on STEMI patient treated with streptokinase

As is depicted in Table 2 ,in Group-A 36(72%) had smoking history, 33(66%) were hypertensive, 35(70%) were dyslipidemic and 15(30%) had family history of premature CAD; On the other hand in Group-B 24(48%) were smoker, 18(36%) were hypertensive, 20(40%) were dyslipidemic and 12(24%) had family history of premature CAD. There was an association found between smoking, hypertension, dyslipidemia and two groups ($p<0.05$).

Table 3: Distribution of the respondents according to site of myocardial infarction, ST segment resolution and Left ventricular ejection fraction (LVEF)

Site of myocardial infarction	Group-A STEMI with DM (n=50)		Group-B STEMI without DM (n=50)		<i>p</i> value
	Count	%	Count	%	
Anterior MI	21	42.0	20	40.0	0.786 NS
Anteroseptal MI	7	14.0	5	10.0	
Inferior MI	18	36.0	17	34.0	
Lateral MI	4	8.0	8	16.0	
ST segment resolution					
>70% (Complete)	14	28.0	26	52.0	0.001
30-70% (Partial)	15	30.0	18	36.0	0.163
<30% (Failed)	21	42.0	6	12.0	0.001
Left ventricular ejection fraction (LVEF)					
<25	1	2.0	-	-	0.008 **
26-40	11	22.0	5	10.0	
41-49	16	32.0	14	28.0	
≥50	22	44.0	31	62.0	
Mean±SD	46.54±10.17		51.64±8.48		

NS means not-significant ($p>0.05$);** means significant at 1% level ($p<0.01$);n=number of patients in each group

Anterior MI was the most prevalent in both groups, with a similar distribution of MI sites (42% in Group A vs. 40% in Group B, $p = 0.786$). Group B's ST segment resolution was substantially higher than Group A's, with 52% achieving complete resolution as opposed to 28% ($p = 0.001$). On the other hand, Group A had a considerably higher rate of unsuccessful resolution (<30%) (42% vs. 12%, $p = 0.001$). Group B showed superior cardiac function in terms of LVEF, with a greater percentage of participants reaching LVEF $\geq 50\%$ (62% in Group B vs. 44% in Group A). Additionally, Group B's mean LVEF (51.64 \pm 8.48) was substantially greater than Group A's (46.54 \pm 10.17, $p = 0.008$) (Table 3).

Table 4: In-Hospital complications in Group-A (STEMI with DM) and Group-B (STEMI without DM) patients received streptokinase infusion.

		Group-A STEMI with DM (n=50)		Group-B STEMI without DM (n=50)		<i>p</i> value
		Count	%	Count	%	
ALVF	Yes	15	30.0%	14	28.0%	0.826 NS
	No	35	70.0%	36	72.0%	
Cardiogenic shock	Yes	22	44.0%	12	24.0%	0.005 **
	No	28	56.0%	38	76.0%	
Arrhythmia	Yes	7	14.0%	6	12.0%	0.766 NS
	No	43	86.0%	44	88.0%	
Prolong Hospital Stay	Yes	30	60.0%	20	40.0%	0.006 **
	No	20	40.0%	30	60.0%	

NS means not-significant ($p>0.05$); n=number of patients in each group; ALVF=acute left ventricular failure

Table 4 shows that during hospital stay, among the notable complications, acute left ventricular failure (ALVF) in 15 (30%) and 14 (28%), shock in 22 (44%) and 12 (24%), arrhythmia was noted in 7 (14%) and 6 (12%) STEMI patients with DM and STEMI patients without DM respectively. Hospital stay was prolonged in 30 (60%) STEMI with DM and 20 (40%) in STEMI without DM patients. Data were analyzed using chi-square test.

DISCUSSION

When streptokinase is used to treat ST segment elevation myocardial infarction (STEMI), diabetes mellitus has a substantial impact on both clinical outcomes and ST segment resolution. According to Shah et al., who documented comparable age disparities in Pakistani populations, the mean age of diabetes STEMI patients in this study was 59.44 years, while the mean age of non-diabetics was 54.52 years¹². Similar to findings by Khan et al. in Bangladesh, the gender distribution showed a male predominance in all groups, but it was much larger in non-diabetics (88% male) than in diabetics (58% male)¹³.

In line with Khan et al., risk variables such smoking, hypertension, and dyslipidemia were more common in diabetic individuals, emphasizing the metabolic abnormalities

linked to the disease. After streptokinase therapy, the diabetic group showed noticeably worse ST segment resolution, with only 28% obtaining complete resolution as opposed to 52% in the non-diabetic group¹³. This observation is consistent with research by Shah et al. , who found that diabetics had much greater rates of failed resolution (68.4% vs. 18.2%; $p<0.001$) and much lower rates of complete resolution (19% vs. 50.4%; $p<0.001$)¹². The intricacy of ST resolution as a marker is highlighted by Pourmousavi et al., who reported no significant difference when a lower threshold ($\geq 50\%$ resolution) was applied¹⁴. Other studies support these findings^{3,9,15,16}.

Patients with diabetes had a significantly lower mean ejection fraction (EF) (46.54 ± 10.17) than those without the disease (51.64 ± 8.48). This finding is in line

with previous study which found that diabetes is a predictor of decreased myocardial function¹⁷. In line with Iqbal et al., who found that diabetics had a 4.2-fold increased risk of arrhythmic consequences, diabetic patients also had a higher incidence of cardiogenic shock and arrhythmias. Ventricular tachycardia and bradyarrhythmias, which indicate poor myocardial recovery and reperfusion, were prevalent in diabetics, especially in those with failed ST resolution¹⁶.

Due to greater complication rates (defined as >5 days for inferior MI and >7 days for anterior MI), diabetes individuals' hospital stays were noticeably longer. These results highlight how diabetes negatively affects cardiac recovery and systemic outcomes in STEMI patients receiving streptokinase treatment, highlighting the need for specialized therapeutic approaches to reduce these risks.

LIMITATIONS

The generalizability and precision of the findings may be impacted by the limitations of the study, which include its single-center design, relatively small sample size, and dependence on manual ST segment measurements. In order to validate these findings and investigate potential therapies to improve reperfusion efficacy and reduce the negative consequences of diabetes in STEMI, it is necessary to conduct further multicenter studies that utilize improved imaging techniques and involve populations that are larger and more diverse.

CONCLUSION

In this study of STEMI patients treated with streptokinase, those with diabetes mellitus had poorer clinical outcomes compared to non-diabetic patients. Specifically, diabetic patients showed lower rates of complete ST-segment resolution, reduced left ventricular ejection fraction, higher incidence of cardiogenic shock, and longer hospital stays. These findings highlight the negative impact of diabetes on reperfusion and recovery

in STEMI patients. Individualized management strategies may help improve outcomes in this population, but further studies with larger, multicenter cohorts are needed to confirm these results.

CONFLICT OF INTEREST

There is no conflict of interest

REFERENCES

1. Junqueira LC, Carneiro J. The circulatory system. The Basic Histology. 11th ed. New York: McGraw-Hill, Med Division; 2005. 205-223p.
2. Puri A, Gupta OK, Dwivedi M, Bharadwaj RPH, Narain VS, Singh S. Homocysteine and lipid levels in young patients with coronary artery disease. J Assoc Physicians India. 2003;51:681-685.
3. Chowdhury MAR, Hossain AKMM, Dey SR, Akhtaruzzaman AKM, Nur-A-Farhana I. A comparative study on the effect of streptokinase between diabetic and non-diabetic myocardial infarction patients. Bangladesh J Pharmacol. 2008;3:1-7. doi.org/10.3329/bjp.v3i1.822
4. Malik A. Congenital and acquired heart disease. Bangladesh Med Res Counc Bull. 1976;11:115-119.
5. Khandaker RK, Hossain D, Hossain M, Zaman S. Retrospective analysis of acute myocardial infarction: A 4 years study of 2690 patients. Bangladesh Heart J. 1987;1:14-17.
6. Dimitrova IN. Acute Myocardial Infarction in Young Individuals: Demographic and Risk Factor Profile, Clinical Features, Angiographic Findings and In-Hospital Outcome. Cureus. 2023;15(9):e45803. doi: 10.7759/cureus.45803.
7. Gonzalez-Porras JR, Martin-Herrero F, Garcia-Sant R, Lopez ML, Balanzategui A, Mateos MV, et al. Hyperhomocysteinemia is a risk factor of recurrent coronary event in young patients irrespective of the MTHFR C677T polymorphism. Thromb Res. 2007;119:691-698. doi.org/10.1016/j.thromres.2006.06.002

8. McGuire DK. Diabetes and cardiovascular system. In: Mann DL, Zipes DP, Libby P, Bonow RO, editors. *Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine*. 10th ed. Philadelphia: Saunders Elsevier; 2015. p. 1366.
9. Zairis MN, Lyrus AG, Makrygiannis SS, Psarogianni PK, Adamopoulou EN, Handanis SM. Type 2 diabetes and intravenous thrombolysis outcome in the setting of ST elevation myocardial infarction. *Diabetes Care*. 2004;27:967-971. doi.org/10.2337/diacare.27.4.967
10. De Lemos, Thygesen K, Alpert JS, Jaffe AS, Maaten L, Simoons, et al. Third universal definition of myocardial infarction. *Circulation*. 2012;126:2020-2035.
11. Yan D, Li W, Bai M, Wang P, Zhang Z. Enhancing microcirculation in STEMI patients: can intracoronary thrombolysis combined with thrombus aspiration provide an optimal strategy? *Front Cardiovasc Med*. 2025;12:1516054. doi: 10.3389/fcvm.2025.1516054.
12. Shah S, Abbas G, Aslam A, Randhawa FA, Khan FU, Khurram H, et al. Assessment of health-related quality of life among patients with obesity, hypertension and type 2 diabetes mellitus and its relationship with multimorbidity. *PLOS One*. 2023; 18 (8): e0289502. Doi:10.1371/journal.pone.0289502.
13. Khan MH, Islam MN, Ahmed MU, Shafique AM, Bari MS, Islam MZ, et al. Comparison between Angiographic Findings of Coronary Artery Disease in STEMI and NSTEMI Patients of Bangladesh. *Mymensigh Med J*. 2016; 25 (2): 221-225. Doi:10.1016/j.jacc.2018.03.052.
14. Pourmousavi MM, Tajlil A, Darabad BR, Pourmousavi L, Pourafkari L, Ghaffari S. The impact of diabetes on electrocardiographic ST resolution and clinical outcome of acute ST elevation myocardial infarction following fibrinolytic therapy. *Cor Vasa*. 2016;58:e584-e590. doi.org/10.1016/j.crvasa.2015.11.001
15. Sulehria SB, Nabeel M, Awan AK. Failure of streptokinase therapy in diabetic and non-diabetic patients presenting with ST elevation myocardial infarction. *Pak J Med Health Sci*. 2014;8:750-752.
16. Iqbal MJ, Javed MT, Tahira I. Complications and mortality in ST-segment elevation acute myocardial infarction in diabetic and non-diabetic patients. *Med J Islam World Acad Sci*. 2011;19:87-94.
17. Kazemi T, Shafiee FK, Shafiee T. Complications and prognosis of myocardial infarction. *Int Cardiovasc Res J*. 2015;9(4):251-252. doi : 10.17795/icrj-9(4)251.