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Abstract :  In environmental sex determination (ESD) gender is decided after conception, depending on the environment, rather than being 
genetically fixed. ESD has rarely been studied in homosporous ferns. In the present study, Culcita macrocarpa gametophytes were cultured under 
varying nutrient conditions. Initially, most of the gametophytes of Culcita macrocarpa were male and subsequently hermaphrodite under 
different nutrition. The result indicates that its sex determination is protandry. All nutrient conditions were favourable for developing male 
prothalli but only good environment (high nutrient) was favourable for female gametophyte growth.  In all respects, female gametophytes were 
much larger, than the other types of gametophytes. Hermaphroditic gametophytes were larger than male gametophytes, which were larger than 
asexual gametophytes.  
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mvivsk t  cwi‡ekxq wj½ wba©vi‡Yi(ESD)  †¶‡Î Mf©avi‡Yi ci wj½ wba©viY RxbMZ wba©vi‡Yi †P‡q cwi‡ekxq wba©vi‡Yi Dci ‡ekx wbf©ikxj| mg‡iYycÖm~ dv‡Y© 
cwi‡ekxq wj½ wba©viY m¤ú‡K© wKQy M‡elYv n‡q‡Q| eZ©gvb M‡elYvq wewfbœ cywó‡¶‡Î Culcita macrocarpa Gi Pvl Kiv n‡q‡Q| cÖv_wgK ch©v‡q wewfbœ cywóMZ 
Ae ’̄vq C. macrocarpa Gi AwaKvsk wj‡½i Dw™¢̀  cyi“l Ges cieZx©‡Z Dfwj½| djvdj wb‡`©k K‡i †h,G‡`i wj½ wba©viY †cÖvUvwÛª (Protandry)| mKj cywó 
gva¨g cys †cÖv‡_jv‡mi Rb¨ Dchy³ wKš‘ ïaygvÎ fvj cwi‡ekB ¿̄x wj½a‡ii Rb¨ Dchy³| mKj †¶‡Î, ¿̄x wj½ai Ab¨ mKj wj½ai Dw™¢‡`i Zzjbvq AvKv‡i A‡bK 
eo| Dfwj½ wj½ai cys-wj½ai †_‡K eo hv Avevi A‡hŠb wj½ai †_‡K eo| 
  

Introduction 

Mechanisms of sex determination in plants have attracted 
much attention within plant biology (Tanurdzic and Banks 
2004). Environmental sex determination is particularly 
interesting for physiological, ecological and evolutionary 
reasons. Environmental sex determination is a form of 
phenotypic plasticity, where individuals produce either 
female, male or both sex organs depending largely upon 
environmental circumstances (Leimar et al. 2004). 
Evolutionary theory predicts that environmental sex 
determination is selected for when a factor that varies across 
the environment differentially and influences female and 
male performance (Charnov and Bull 1977).  
Environmental sex determination is widespread in many 
animal and plant taxa (Freeman et al. 1980 and Korpelainen, 
1998), but only in homosporous pteridophytes it becomes 
dominant. Homosporous pteridophytes produce a single 
kind of spore that develops into potentially bisexual 
gametophytes. However, in many species actual gender is 
conditional on environmental conditions. Gametophytes of 
many species tend to become male under poor growing 
conditions, such as poor light level and quality (Guillon and 
Fievet 2003), low nutrient availability (Korpelainen, 1994) 
or high density (Huang et al. 2004). Conversely, 
gametophytes normally become female under rich growing 
conditions. A theoretical basis for the relationship between 
stressing conditions, reduced growth rate and maleness 
comes from an evolutionary model proposed by Haig and 
Westoby (1988). Based on a higher cost of female 
reproduction and other premises, they predicted female sex 
expression under rich growing conditions and a tendency to 
reproduce as a male under poor conditions.  

Culcita macrocarpa C. Presl is the only European 
member of the family Dicksoniaceae with very large 
fronds, often over 2m long that are persistent in winter 
and arranged in crowns (Figure 1). The spores of this 
species are highly sensitive to desiccation (Quintanilla 
et al. 2002). In northwest Spanish populations of C. 
macrocarpa sporangium dehiscence occurs around the 
spring equinox, when temperatures are suitable for 
germination (Quintanilla et al. 2000). 

 

 

 

 

 

 

 
 

Figure 1  Sporophyte of Culcita macrocarpa. 

The fern Culcita macrocarpa produces only one type of 
spore (i.e., homosporous), yet each Culcita spore has 
the potential to develop as a free-living haploid green 
gametophyte with numerous rhizoids on the inferior 
central surface cushion (Figure 2) which are sexually 
protandrous (Quintanilla et al. 2005) as like as 
Ceratopteris (Banks 1997 1999) where the sex of the 
gametophyte is determined during the development of 
only sperm or egg or produces both egg and sperm. 
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Figure 2  Gametophyte of Culcita macrocarpa. 

Sex differentiation is manifested in the increasing 
complexity of interaction during nutrient supply, the 
retention of the gametophyte.  Carbohydrates are known to 
perform important regulatory functions in the plant life 
cycle, including photosynthesis (Lloyd and Zakhleniuk, 
2004; Halford and Paul 2003) and carbohydrate 
partitioning (Rook and Bevan 2003) mechanisms by using 
different sugars to influence the gene expression and 
ultimately plant development (Gibson, 2005).  

Stress induced sexual expression in fern gametophytes was 
fruitfully studied within the ESD theoretical framework by  
Lucía DeSoto et al. (2008) and found  the effects of 
nutrient availability and individual density in Woodwardia 
radicans. Nutrients as well as other factors are implicated 
in the growth and development of gametophytes and 
sporophytes (Fernández et al. 1999). Although references 
to such environmental influences on gametophyte gender 
are scanty, it is only recently that an ESD-based 
interpretation has gained momentum.  

In this study, the effect of nutrition on sex determination 
was assessed to establish whether this species fits the model 
of Haig and Westoby (1988). Growth of C. macrocarpa 
was also examined to provide information on the size of 
gametophytes needed to favour successful reproduction.  

Material and Methods 

C. macrocarpa gametophytes were cultured under 
varying nutrient conditions. Spores were sown under 
three different nutrient levels (Dyer agar diluted 0,100 
and 1000 times). The fixed level of light (55-65 PARS) 
was used for this experiment. 

Seven weeks after sowing, 200 gametophytes per 
nutrient level were transplanted into individual cell under 
the same nutrient conditions for germination. Cultures 
were incubated in a phytothron with a 14h photoperiod 
and alternating 20 0C-light/15 0C-darkness temperatures. 

To elucidate patterns of gender expression in gametophytes, 
100 gametophytes per nutrient level were randomly 
sampled. Gametophytes were stained with acetocarmine- 
chloral hydrate after 19 and 27 weeks of sowing and their 

sex and number of gametangia were determined under a 
light microscope. To determine gametophyte size, all 
individuals were scanned and their area was measured with 
the program Image (Abramoff et al. 2004). 
Results and Discussion 

In this study, the same culture conditions were applied 
and the developmental differences were observed 
between two times (19 and 27 weeks). 

Antheridia formed on the dorsal and ventral surfaces of 
the wing, while archegonia formed on the ventral 
surface of the anterior cushion. In all cultures, the 
mature antheridium was globose and consisted of a 
basal cell, a cylindrical ring and a cap cell (Figure 3). 
Archegonia had long neck cells (Figure 4). 

 

 
Figure 3  Antheridia of Culcita macrocarpa. 

 
Figure 4  Archegonia of Culcita macrocarpa. 

Gender was found to be significantly affected by 
nutrient level. After sowing, the gametophytes of 
Culcita macrocarpa (Figure 2) exhibited successful 
vegetative and reproductive growth conditions overall. 

Antheridia appeared first in all nutrients after 19 weeks 
of sowing. Most of the gametophytes became male and 
were found to be positioned about more than half except 
1/100 nutrient levels but after 27 weeks, male 
percentages decreased at 1/100 and undiluted nutrient 
levels. Gametophytes showed faster growth, especially 
with mid and high nutrient levels. Female and bisexual 
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became predominant at that time and reached female 
30% and 10%, and bisexual 65% and 71% at 1/100 and 
undiluted nutrient levels, respectively.  

In the first time, laboratory populations were mostly 
antheridiate and bisexuals but in the second time 
antheridiate with archegoniate and bisexuals. 

Most of the gametophytes of the fern Culcita are either 
male or hermaphrodite. In some homosporous fern that 
has no antheridiogen activity, their sex is epigenetically 
determined by the environmental factors. The male and 
hermaphroditic gametophytes of Culcita are 
morphologically distinct by the type of gametangia 
produced and as well as by shape and size.  
Hermaphroditic gametophytes have a distinct lateral 
multicellular meristem from which most cells of the 
hermaphrodite prothallus are derived. This meristem 
forms a meristem notch that gives the hermaphrodite its 
heart-shaped appearance (Strain et al. 2001).  The male 
gametophyte is much smaller and usually shorter-lived 
than the hermaphrodite (Bank 1997). Hermaphrodites 
produce both antheridia and archegonia; they can be 
self-fertilized to form homozygous sporophytes. 

To understand fern reproduction, it is necessary to 
understand sexual expression and the factors that affect it. 

Although homosporous ferns have the potential to be 
hermaphroditic, many factors may affect their growth and 
sexual expression (Verma and Selvan, 2001). In the present 
study gametophytes of C. macrocarpa were initially male 
and subsequently hermaphrodite under the different 
nutritions level. The data obtained, regarding  their sex 
determination was protandry, which is in  agreement with 
the  previous research (Quintanilla et al. 2005). 

Gametophytes of C. macrocarpa  develop almost 
exclusively as males, in the absence of antheridiogen and 
then hermaphrodites. The male prothalli expression is 
stable and more or less indifferent in all times on sex 
determining signals once its sex is established.  In this 
connection it can be said that all males are genotypically 
developed. Because the number of male prothalli did not 
change even after developing archegonia but asexual 
gametophytes decreased with time. So from this view, it 
can be assumed that female prothalli is developed by 
changing of asexual gametophytes not from male 
gametophytes. Both conditions are favourable for 
developing of male prothalli but only good environment 
is favourable for female gametophyte growth, which 
supports the ESD theory. Because, here good 
environment is responsible for archegonia development 
by which breeding system can be changed. 

 
Figure 5  Relative frequencies of gametophyte genders at the three nutrient levels. 

 
Figure 6 Gametophyte size at the three nutrient levels. 

 
 



Lipika et al. 112

 

In all respects, female gametophytes were much larger 
than other types of gametophytes. Hermaphroditic 
gametophytes were larger than male gametophytes, which 
were larger even than asexual gametophytes. The size of 
females and bisexuals increased with increasing the 
nutrient level.  

The size of C. macrocarpa in all samples was more or less 
similar in each kind of nutrition level. Consistently, all 
gametophytes grew well; the male gametophytes were 
always   smaller than the female and bisexual ones. 
Similar result has been reported for other genera (Haufler 
and Ranker 1985). In female gametophytes, the number of 
archegonia significantly increased with gametophyte size 
across the two harvest times (Figure 5 & 6). In bisexual 
gametophytes, archegonia and total gametangia 
significantly increased with gametophyte size. Males did 
not show clear size patterns number across nutrient levels. 

Females were always larger than the males with 
significant assortment.   Size and number were more 
important for females than for males in all phases of the 
breeding season. It was also compatible with the 
observations of earlier investigators (Naf 1956) that 
‘male’ prothalli were smaller than ‘female’ prothalli 
and that conditions made  interference with growth, 
e.g., low light intensity, crowding and poor mineral 
supply favoured the production of antheridia over that 
of archegonia.  

Environmental factors affecting gender in ferns, such as 
nutrients, have received very little attention in most 
reviews regarding sex expression (Korpelainen 1998; 
Raghavan 1989,). In many fern species, immature 
gametophytes become female or male under rich or poor 
growth conditions, respectively. Resource of population 
is one of the factors affecting sexual expression and 
growth in gametophytic plants. Population resources are 
limited by competition, and gametophytes are often 
asexual or male, and narrow. On the other hand female 
and hermaphroditic gametophytes often occur in sparse 
populations (Cousens 1979). Plant growth and 
development ultimately depend upon environmental 
variables, such as temperature, light intensity and the 
availability of water and essential minerals (Marschner 
1995). The longer time was required for successful 
female reproduction, compared to that of the fast male 
reproduction (Delph 1999).   

Conclusion 

Sexual expression in fern gametophytes can be fruitfully 
studied within the ESD theoretical framework. C. 
macrocarpa is first male and then hermaphrodite, even in 
conditions supposed to be optimal for growth. Natural 

populations of C. macrocarpa are presumably 
androdioecious (Quintanilla et al. 2005). Klekowski and 
Lloyd (1968) said that this sequence favours 
intragametophytic selfing. Size-related patterns of sexual 
expression were consistent with the size- advantage model, 
because female function benefited more from a larger size 
than did male function. The results of this study raise the 
possibility that certain morphological features, particularly 
the growth and sex expression of the gametophyte are 
controlled by the same regulatory mechanisms and genes 
that control environmental factors. 
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