Abstract: Stable carbon ($\delta^{13}C$) and oxygen ($\delta^{18}O$) isotopes of bivalve shells and calcareous sediments of the Mio-Pliocene Nhila Anticline, southeast Bengal Basin, Bangladesh have been investigated to obtain information on paleoclimatic and paleoenvironmental conditions during deposition. The $\delta^{13}C_{\text{PDB}}$, $\delta^{18}O_{\text{PDB}}$, and $\delta^{18}O_{\text{SMOW}}$ values in bivalve shell range from -2.81‰ to -1.56‰, -3.57‰ to -2.39‰ and 27.18‰ to 28.40‰ in bivalve shells and -13.90‰ to -1.75‰, -4.71‰ to -2.13‰ and 26.01‰ to 28.66‰ in calcareous sediments, respectively. The $\delta^{13}C_{\text{PDB}}$ values in bivalve shells are comparable to that of calcareous sediments (~ -1.75‰) in the upper section, but $\delta^{13}C_{\text{PDB}}$ values in calcareous sediments are more negative excursion towards lower section (up to -13.90‰). These results signify that salinity gradients could modified the isotope values and/or strong influence of freshwater conditions. The variable $\delta^{13}C_{\text{PDB}}$ values in both bivalve shell and calcareous sediment suggesting diagenetic alteration of carbonates and water temperature effects. The more negative $\delta^{18}O_{\text{PDB}}$ values imply humid paleoclimatic conditions during the Mio-Pliocene sedimentation. Therefore, the $\delta^{13}C_{\text{PDB}}$ values of the Mio-Pliocene sediments of Nhila Anticline are probably controlled by paleotemperature leading to intensification of high rainfall.

Key words: Stable isotopes, bivalve shells, calcareous sediments, Bengal Basin, Bangladesh

Introduction

The Bengal Basin is located in the northeastern most part of the Indian subcontinent, occupying whole Bangladesh, west Bengal, Assam, Tripura and part of Myanmar. It has been originated between the collision of Indian, Eurasian and Burmese plates building the extensive Himalayan Mountain Belt to the north and Indo-Burman Ranges to the east (Fig. 1). This basin lies between the latitudes 20°34' to 26°38' N and the longitudes 88°01' to 92°41' E. Sedimentation of the basin comprises ~22 km thick in its central part (Alam et al., 2003; Hossain et al., 2010). The Bengal Basin has been divided into three geo-tectonic provinces such as the Stable Shelf, the Central Deep Basin and the Chittagong-Tripura Folded belt (Alam et al., 2003).

Tectonically, the study area is situated in Nhila Anticline of the Chittagong-Tripura Folded Belt, southwest Bengal Basin, Bangladesh (Fig. 1). This fold belt increases eastward, subsequently merging with the Indo-Burman Ranges (Uddin and Lundberg, 1999). The studied Nhila Anticline is ~28 km away from the Cox’s Bazar district, and is very close to the international border of Myanmar (Fig. 1). The stratigraphy of the southeast Bengal Basin of Bangladesh is shown in Table 1. The lithostratigraphic succession of the studied Nhila Anticline area is subdivided into the Bhurban, Boka Bil and Tipam Sandstone Formations in ascending order of Miocene to Pliocene in age. The Bhuban Formation consists mainly of sandstone, shale, silty shale and occasionally conglomerate subsequently deposited in deltaic environments. The thickness of the Formation is >3000 m (Gani and Alam, 2003). The overlying Boka Bil Formation consists predominantly of shale, silty shale with subordinate siltstone and sandstone. Depositional environment of the formation was also deltaic. The thickness of the Boka Bil Formation is 1500 m (Gani and Alam, 2003). The contact between the Boka Bil Formation and overlying Tipam Sandstone Formation is erosional.
Fig. 1 Location map of the study area showing major tectonic features of Bengal Basin and adjoining areas (modified after Alam et al., 1990; Khan, 1991; Reimann, 1993).

The Tipam Sandstone Formation comprises mainly of sandstone with shale, siltstone and occasionally conglomerate subsequently deposited in braided river environment under fluvial regime (Gani and Alam, 2003; Alam et al., 2003; Roy and Roser, 2011).

Stable carbon and oxygen isotopes are widely used to evaluate the diagenetic environment and depositional processes (Armstrong-Altrin et al., 2011). Carbon isotopic compositions of pedogenic carbonates have been shown to reflect changes in atmospheric ρCO$_2$ levels over geologic timescale (Cerling, 1991; Robinson et al., 2002). Oxygen isotopic compositions of carbonates are much prone to alteration during diagenesis and/or post-depositional modifications (Hudson, 1977; Viezer, 1983). However, the isotopic composition of soil CO$_2$ is largely controlled by the proportion of surface plant biomass using the C$_3$ (Calvin cycle) or C$_4$ (Hatch-Slack) photosynthetic pathways (Cerling, 1984; Alam et al., 1997).

Stable isotope study is rare in the Bengal Basin of Bangladesh. Therefore, the objective of this study is to evaluate paleoclimate and paleoenvironment proxies using stable carbon ($\delta^{13}C$) and oxygen ($\delta^{18}O$) isotopes of bivalve shells and calcareous sediments of the Nhila Anticline, southeast Bengal Basin, Bangladesh.

Table 1 Stratigraphy of southeast Bengal Basin, Bangladesh (after Evans, 1932; Gani and Alam, 2003; Roy and Roser, 2011).

<table>
<thead>
<tr>
<th>Age (approx.)</th>
<th>Group</th>
<th>Formation</th>
<th>Lithology</th>
<th>Depositional environment</th>
<th>Thickness (approx. m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent</td>
<td>Alluvium</td>
<td>Alluvium</td>
<td>Sand, silt, clay</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plio–Pleistocene</td>
<td>Dupi Tila</td>
<td>Dupi Tila</td>
<td>Sandstone, shale</td>
<td>Meandering</td>
<td>500</td>
</tr>
<tr>
<td>Pliocene</td>
<td>Tipam</td>
<td>Girujan Clay</td>
<td>Clay, sandstone</td>
<td>Overbank</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipam Sandstone</td>
<td>Sandstone, shale</td>
<td>Braided</td>
<td>900</td>
</tr>
<tr>
<td>Miocene</td>
<td>Surma</td>
<td>Boka Bil</td>
<td>Sandstone, shale</td>
<td>Deltaic</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bhurban</td>
<td>Sandstone, shale</td>
<td>Deltaic</td>
<td>$>$3000</td>
</tr>
</tbody>
</table>

Based not seen

Materials and Methods

A total of 10 samples (3 bivalve shells and 7 calcareous sediments) were collected from the upper Boka Bil and Tipam Sandstone Formations in Mio-Pliocene Nhila Anticline, southeast Bengal Basin, Bangladesh.

Stable isotope analyses were performed at the Stable Isotope Laboratory (LABISE) of the Federal University of Pernambuco, Brazil. Detailed sample preparation and analytical techniques are illustrated in Armstrong-Altrin et al. (2011), but are also summarized below. CO$_2$ was removed from powdered carbonates in a high vacuum line after reaction with H$_3$PO$_4$ at 25 °C, and cryogenically cleaned based on the technique explained by Craig (1957). The SMOW (Standard Mean Ocean Water) conversion values to PDB (Peedee Belemnite) standard were carried out using the following equation $\delta^{18}O_{calcite}$ (SMOW) = 1.03086 $\delta^{18}O_{calcite}$ (PDB) + 30.86 (Friedmann and O’ Neil, 1997).

Results and Discussion

Average stable carbon and oxygen isotope values of Mio-Pliocene bivalve shells and calcareous sediments of the Nhila Anticline are shown in Table 2.
The $\delta^{13}C_{\text{PDB}}$ values for bivalve shell illustrate negative excursion, range from -2.81% to -1.56% (av. -2.19%), while $\delta^{13}C_{\text{PDB}}$ values for calcareous sediments show more negative excursion, varies from -13.90% to -1.75% (av. -7.56%) (Table 2). Armstrong-Altrin et al. (2001) reported that $\delta^{13}C_{\text{PDB}}$ values in the modern carbonates from the Kudankulam Formation, Tamil Nadu have positive excursion, ranging from 0% to 4%. In this study, the negative $\delta^{13}C_{\text{PDB}}$ values in the samples of Miocene Pliocene Nhila Anticline suggesting that the effects of pedogenic modification of carbonates (Bellanca, et al., 1995; Armstrong-Altrin et al., 2001), and also controlled by meteoric water conditions (Allan and Matthews, 1977, 1982). These wide variations of $\delta^{13}C_{\text{PDB}}$ values further indicate that salinity gradients can modify the isotope values or the strong influence of freshwater environmental conditions. The $\delta^{13}C_{\text{PDB}}$ of carbonate is always shows wide range of variation that is more related to plant photosynthetic pathways (Cerling, 1984; Cerling et al., 1989; Alam et al., 1997). However, the elevated algal population and photosynthetic activity in the shallow marginal marine environment can give positive $\delta^{13}C$ values (Milliman and Muller, 1977; Nelson, 1988; Armstrong-Altrin et al., 2011).

The $\delta^{18}O_{\text{PDB}}$ values for bivalve shells and calcareous sediments range from -3.57% to -2.39% (av. -3.08%) and -4.71% to -2.13% (av. -3.58%), respectively (Table 2). Similarly, $\delta^{18}O_{\text{SMOW}}$ values in both bivalve shells and calcareous sediments range from 27.18% to 28.40% (av. 27.69%) and 26.01% to 28.66% (av. 27.17%), respectively (Table 2). The negative $\delta^{18}O_{\text{PDB}}$ values in the both bivalve shells and calcareous sediments indicate post-depositional modification and/or meteoric water diagenesis (Keith and Weber, 1964; Veizer and Demovic, 1973; Nagarajan et al., 2008; Armstrong-Altrin et al., 2011; Hossain et al., 2012). Dettman et al. (2001) reported that high rainfall and wet season climatic conditions are linked with the most negative $\delta^{18}O_{\text{PDB}}$ values. The high negative $\delta^{18}O_{\text{PDB}}$ values imply lower precipitation and temperature effect, whereas low negative values signify humid paleoclimatic condition. As for example, carbonate rocks of Upper Miocene Kudankulam Formation, southern India were deposited in humid paleoclimatic conditions (Armstrong-Altrin et al., 2009). However, the variable $\delta^{18}O_{\text{PDB}}$ values in sediments of the Nhila Anticline indicate water temperature effect, and small negative $\delta^{18}O_{\text{PDB}}$ values inferring humid paleoclimatic conditions during the Mio-Pliocene sedimentation in the studied area.

Table 2. Stable carbon and oxygen isotope composition of bivalve shells and calcareous sediments of the Mio-Pliocene Nhila Anticline, southeast Bengal Basin, Bangladesh.

<table>
<thead>
<tr>
<th>Sample no</th>
<th>Sample type</th>
<th>$\delta^{13}C_{\text{calcite}}$ (%)</th>
<th>$\delta^{18}O_{\text{calcite}}$ (%)</th>
<th>$\delta^{18}O_{\text{calcite}}$ (SMOW)1</th>
<th>$\delta^{18}O_{\text{water}}$ (SMOW)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 1</td>
<td>Calcareous sediment</td>
<td>-1.75</td>
<td>-3.81</td>
<td>26.93</td>
<td>-2.88</td>
</tr>
<tr>
<td>GEO 2</td>
<td>Calcareous sediment</td>
<td>-6.38</td>
<td>-4.71</td>
<td>26.01</td>
<td>-3.78</td>
</tr>
<tr>
<td>GEO 4</td>
<td>Bivalve shell</td>
<td>-1.56</td>
<td>-2.39</td>
<td>28.4</td>
<td>-1.46</td>
</tr>
<tr>
<td>GEO 5</td>
<td>Bivalve shell</td>
<td>-2.81</td>
<td>-3.57</td>
<td>27.18</td>
<td>-2.64</td>
</tr>
<tr>
<td>GEO 6</td>
<td>Calcareous sediment</td>
<td>-6.37</td>
<td>-3.99</td>
<td>26.75</td>
<td>-3.06</td>
</tr>
<tr>
<td>GEO 8</td>
<td>Bivalve shell</td>
<td>-2.19</td>
<td>-3.27</td>
<td>27.49</td>
<td>-2.34</td>
</tr>
<tr>
<td>GEO 9</td>
<td>Calcareous sediment</td>
<td>-8.81</td>
<td>-2.76</td>
<td>28.02</td>
<td>-1.83</td>
</tr>
<tr>
<td>GEO 10</td>
<td>Calcareous sediment</td>
<td>-8.9</td>
<td>-4.29</td>
<td>26.44</td>
<td>-3.36</td>
</tr>
<tr>
<td>GEO 11</td>
<td>Calcareous sediment</td>
<td>-13.9</td>
<td>-2.13</td>
<td>28.66</td>
<td>-1.2</td>
</tr>
<tr>
<td>GEO 12</td>
<td>Calcareous sediment</td>
<td>-6.78</td>
<td>-3.35</td>
<td>27.41</td>
<td>-2.42</td>
</tr>
</tbody>
</table>

$^1\delta^{18}O_{\text{calcite}}$ (SMOW) = 1.03086 $\delta^{18}O_{\text{calcite}}$ (PDB) + 30.86 (Friedman and O'Neil, 1977).

2These values are calculated by assuming a paleotemperature of precipitation of 20 °C and 25 °C (e.g., Wright, 1987) and using the calcite paleothermometer of Friedman and O'Neil (1977).

The estimated $\delta^{18}O$ values of pore waters that precipitated in the bivalve shells, ranging from -2.64% to -1.46% SMOW (av. -2.15%) at 20 °C and -1.57% to -0.38% SMOW (av. -1.07%) at 25 °C, respectively (Table 2). Similarly, $\delta^{18}O$ values in the calcareous sediments ranging from -3.78% to -1.20% (av. -2.65%) at 20 °C and -2.71% to -0.12% (av. -1.57%) at 25 °C, respectively (Table 2). Shackleton (1968) and
Meyers and Lohmann (1985) reported that the seawater composition is inferred to have varied between -0.5‰ and +0.5‰ SMOW. The δ¹⁸O values of pore waters for the studied samples are all lower than typical seawater value, inferring the influence of meteoric water diagenesis (Armstrong-Altrin et al., 2009).

The variation diagram between δ¹³C_PDB and δ¹⁸O_PDB (Fig. 2) show poor correlation (r = -0.20) with parallel or rather negative trend. Marshall (1992) and Buonoconto et al. (2002) reported that strong positive correlation between δ¹³C_PDB and δ¹⁸O_PDB imply diagenetic alteration of carbonates. The poor correlation and scatter distribution in both bivalve shells and calcareous sediments in the Nhila Anticline reflects variable degrees of burial diagenesis and/or the potential effects of meteoric waters (Quade et al., 2007).

Fig. 2 δ¹³C(‰ PDB) versus δ¹⁸O(‰ PDB) plot for bivalve shells and calcareous sediments from Mio-Pliocene Nhila Anticline, southeast Bengal Basin, Bangladesh.

Conclusions
Stable carbon (δ¹³C) and oxygen (δ¹⁸O) isotope compositions of bivalve shell and calcareous sediment from Mio-Pliocene Nhila Anticline, southeast Bengal Basin were used to evaluate paleoclimate and paleoenvironment conditions. The δ¹³C_PDB values (-2.81‰ to -1.56‰) in the bivalve shells show little negative excursion, and the more negative and wide variation of δ¹³C_PDB values of calcareous sediment samples (up to -13.90‰) are also most probably influenced by plant root respiration of variable plant community photosynthesis paths during pedogenic processes in sediment. The δ¹⁸O_PDB values in the bivalve shell and calcareous sedimentary rock samples range from -2.39‰ to -3.57‰ and -4.71‰ to -2.13‰, respectively. The variable δ¹⁸O_PDB values of the Nhila Anticline indicate diagenetic modification of carbonates, and negative δ¹⁸O_PDB values suggest humid climate during the Mio-Pliocene time. Thus, the δ¹⁸O_PDB values in the region are largely controlled by paleotemperature as well as strong rainfall.

Acknowledgements: We thanks to the authority of Stable Isotope Laboratory (LABISE) of the Federal University of Pernambuco, Brazil for stable carbon and oxygen isotope analyses. Thanks are also to Prof. Nishit Kumar Paul, Executive Editor and two anonymous reviewers for their helpful comments and suggestions that have substantially improved the paper.

References

