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Abstract: Several direct empirical time series investigations of global climate change and its impact have been studied by several 

world famous researchers. Some researches regarding local climatic change and its impact have been published but the time 
series properties of the variables related to national as well as local climate are yet to be able to have proper attention. The 
presence or absence of unit roots in these time series or inappropriate statistical tools may challenge the validity of the 
interpretations of their results and implies that cointegration analysis can be used to investigate the relation among variables. This 
article attempts to deduce time series properties of temperature, rainfall and humidity of Dinajpur district. 
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Introduction 

 

Several direct empirical time series investigations of 

global climate change and its impact (e.g. Lane et al. 

1994; Kuo et al. 1990; Thomson 1995; Schönwiese 

1994; Tol 1994; Lean et al. 1995) and some 

researches regarding local climatic change and its 

impact (e.g. Karmaker, 1997; Hossain, et al., 2001) 

have been published but the time series properties of 

the variables have received little attention with a few 

notable exceptions in the case of global temperature 

series (Bloomfield and Nychka 1992; Woodward and 

Gray 1993). 
 

Classical linear regression techniques may indicate a 

positive/negative relationship among such climatic 

series but unable to show any relationship among the 

climatic variables. However, recent developments in 

econometrics allow for the analysis of relationships 

between statistically nonstationary data.  
 

Cointegration techniques (Engle and Granger, 1987; 

Johansen, 1988) are used by macro-economists to 

detect and quantify relations among variables such as 

GDP and aggregate price levels. These non-stationary 

trending variables may share common long-run 
stochastic trends.  
 

In this paper, some climatic data (viz., temperature, 

humidity, and rainfall) are analyzed for the presence 

of stochastic trends in individual variables and for 

stochastic trends shared by two or more of these 

variables. 
 

Objectives of the Study 

The aim of this paper is to investigate the time series 

properties of three climatic variables (temperature, 

humidity and rainfall) of Dinajpur district of 
Bangladesh, which is known for wheat production 

and quality varieties of rice by using these newly 

available statistically rigorous techniques. The whole 

study consists of several sections comprising research 

methodology, data sources and findings of the study.  
 

Time Series Properties  

Time series can be characterized in many ways. The 

study focuses on the presence or absence of stochastic 

trends in the variables. The reason for this is that, 

unlike linear deterministic trends, stochastic trends 

provide a unique "fingerprint" for a variable which 
we can then look for in other series. A shared 

stochastic trend is taken as evidence for a causal 

relation between the series. In the following, review 

was done for the theory of stochastic trends and tests 

for stochastic trends, and also the theory of 

cointegration and discussed its implications. 
 

Deterministic trend 

A deterministic trend is a nonrandom function of 

time. For example, a linear time trend is a linear 

function of time t. In economics and finance, 

deterministic trends are seldom plausible. 
 

A simple model of a deterministic trend is the 

following polynomial trend model. Let Yt be the 

observed time series generated by 

2
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t p tY t t t          ……………..   (2.1) 

where t   is a stationary process. An important 

special case is the linear time trend model with p = 1. 

If we denote 
2(1, , , , )p

tX t t t  then we can 

write (2.1) as a standard regression equation 

t t tY X    .  
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Stochastic trends 

If a series is nonstationary but its first difference is 

stationary the series is said to be integrated of order 

one or I(1). A process that requires differencing twice 

to achieve stationarity is referred to as an I(2) process. 

A process that is stationary without differencing is 
referred to as an I(0) or "levels stationary" process. 

For an I(1) process this trend is a simple random 

walk. An integrated variable shows no particular 

tendency to return to a mean or deterministic trend 

and shocks to the variable are "remembered" - those 

do not die out over time. 

An I (2) process (the more general case) can be 
represented as: 

 

t t tY A   ………………….. (2.2) 

1t t t tA A      ………….. (2.3) 

1t t t     ……………….. (2.4) 

 

zero variance then Yt has a deterministic trend. 

Though still non-stationary, this variable can be made 

stationary by the subtraction of a deterministic trend 

rather than by differencing. This type of I(0) process 

is known as a "trend stationary" process. If 

additionally 0  = 0, then Yt is stationary with mean 

A0. The representation of a stochastic process in (2.2) 

through (2.4) is used in the structural time series 

models.  
 

An alternative representation of a stochastic process is 

used in a number of widely used tests for the presence 

of a stochastic trend. This approach approximates the 

series by an autoregressive process. The first order 

autoregressive representation is given by: 
 

 

1t t tY t Y       ………... (2.5) 

 

where t  is a stationary random error process with 

mean zero, 

is a deterministic time trend. If  and  in 

(2.5) then Yt is a random walk with drift . The mean 

is non-constant over time and the process is 

nonstationary and integrated of order one. 

Alternatively, if  then the series is either trend 

stationary if  and levels stationary if 

An I (2) process can be modeled by the equation 2.5 

through the first differencing of this process. 

 

Effects of stochastic trends 

Unit roots or stochastic trends are important in 

examining the stationarity of a time series. It is 

important to distinguish stationary processes from 

unit root processes, for the following reasons: 

1. Regressions involving unit root processes may 

give spurious results.  

2. For two or more unit root processes, there may 

exist linear combinations which are stationary, 

and these linear combinations may be interpreted 

as long-run relationships.  

3. Tests of parameter restrictions in auto regressions 

involving unit root processes have in general 

different null distributions than in the case of 

stationary processes. In particular, if one would 

test the null hypothesis  = 1 in the above AR(1) 
model using the usual t-test, the null distribution 

involved is non-normal. Therefore, naive 

application of classical inference may give 

incorrect results. 

 

Tests for trends (deterministic/stochastic) 

To test for the presence of deterministic/stochastic 
trends, four tests were applied. The Dickey-Fuller 

(Dickey and Fuller, 1979, 1981) and Phillips-Perron 

(Phillips and Perron, 1988) tests are the same but use 

different approaches to deal with serial correlation in 

the data. For both tests the null hypothesis is that the 

series contains a stochastic trend. The model for the 

Dickey Fuller test is: 

1

1

p

t t i t i t

i

Y t Y Y     



       ………………… (2.6)

where Yt is the variable under investigation and t  is 

a random error term. The number of lags p is chosen 

using the Akaike Information Criterion (Akaike, 

1973). The lagged variables provide a correction for 

possible serial correlation. The null hypothesis is 

. The alternative hypothesis is that the process 

is stationary around the deterministic trend.  
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The Phillips-Perron test uses the same models as the 

Dickey-Fuller tests, but rather than using lagged 

variables, it employs a non-parametric correction 

(Newey and West, 1987) for serial correlation. The 

test statistics for both the Dickey Fuller and Phillips 

Perron tests have the same distributions. Critical 
levels are reproduced in Hamilton (1994) and Enders 

(1995). 

 

The Kwiatowski, Phillips, Schmidt, and Shin (1992) 

test (KPSS) differs from the other tests in that the null 

hypothesis postulates that the series is stationary, the 

alternative is the presence of a stochastic trend.  
 

Unit root test by bootstrapping 

To test for stochastic trend, The model-based 

bootstrap for unit root test was considered. To 

conduct the test assuming the AR(1) model as 

ttt yy   1  and the test statistic under H0:  = 1 

is
)ˆ(

1ˆ






se


 . The bootstrap test can be conducted as 

follows: 

 Step-I: Estimate AR (1) model on data y; 

obtain ̂ , standard error of ̂  and test 

statistic   for the hypothesis H0:  = 1. 

 Step-II: Difference the series ej = yj – yj-1; j 

= 2, 3,........, p. 

 Step-III: Under the hypothesis that H0:  = 
1, simulate new time series by generating the 

bootstrap sample 
**

3

*

2 ,,, n   from (e2 - 

e , e3 - e , ..., en - e ) and then 

setting 1

*

1 yy  ,
*

2

*

1

*

2  yy , and 

**

1

*

jjj yy    for subsequent j. 

 Step-IV: Estimate AR(1) on data y* to 

obtain the test statistic  * for the given 

hypothesis. 

 Step-V: Repeat Step-III & IV a large 

number of times. 

 Step-VI: Compute bootstrap p-value: p = 

prop ( * > ). 

 

The bootstrap test is very important from the 

robustness and diagnostic viewpoint. The test 

procedures mentioned above are studied rigorously in 
statistical inference but so far as we know the 

behavior of these tests based on asymptotic 

distribution and bootstrap replications is not much 

reported. 
 

 

Cointegration 

Cointegration analysis can determine whether the 

stochastic trends uncovered by univariate tests are 

shared by more than one series. Typically, linear 

combinations of integrated process also are 

integrated. The residual from a regression of the two 
variables will be non-stationary. This violates the 

classical conditions for a linear regression. Such a 

regression is known as a spurious regression (Granger 

and Newbold, 1974). Correlation coefficients and t 

statistics for the regression are likely to show that 

there is a significant relation between the variables 

when no such relation exists. 

A further implication of the cointegration concept is 

that if the variables have different orders of 

integration they cannot be cointegrated directly. 
 

Sources of Data 
The major mean monthly meteorological data of 

Dinajpur district on temperature, humidity, rainfall 

are collected from Bangladesh meteorological office. 

The data were collected for a period of 1948 to 1972 

and of 1981 to 2002. But, the data from 1973 to 1980 

on these three variables are not available to us. To 

have this unavailable data on temperature and 

humidity, the forecasting method was used by 

choosing the appropriate ARIMA model in each case. 

The rainfall data are collected from the book “Land 

resources appraisal of Bangladesh for agricultural 
development, Report 3, Land resources data base, 

Volume 1 Climatic data Base (1988). Other missing 

observations are filled in by the median of available 

data. 
 

Results and Discussions 
 

Forecasting the Missing Observations 

To forecast the missing observation of two climatic 

variables, humidity and temperature, the study uses 
suitable ARIMA model. Different possible ARIMA 

models are investigated for known observations from 

1948 to 1970 of each series. Then the Root Mean 

Square Forecast Error (RMSFE) is determined for 

each model for the next two years known 

observations from 1971 to 1972. Since the root mean 

square forecast error can be used as an average of the 

forecasts error, the model with the smallest RMSFE is 

considered as a suitable model for forecasting the 

missing observations from 1973 to 1980. Hence we 

selected ARIMA(1,0,0)(0,1,1)12 model for humidity 
(Yt) and  ARIMA(0,1,1)(0,1,1)12 model for 

temperature (Xt) series for the period 1948 to 1970. 

Estimation results for ARIMA(1,0,0)(0,1,1) 12 based 

on 1948 to 1970 humidity series (absolute t values are 

in parentheses) is: 
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12

12
ˆ(1 0.344958 ) (1 0.7331 )t tB Y B         (4.1) 

 

                (5.9199)                      (20.2838)              ˆ 23.848   
 

Next 24 months forecasts from model 4.1 from origin 
t = 1970:12 and their rough 95% CI are shown in 

Table-4.1 and in Fig. 4.1 The root mean square 

forecast error (RMSFE) can be used as an overall 

measure of accuracy for these 24 forecasts. The 
RMSEF is defined as 

  

2

1

( )
n m

t t

t n

Y f

RMSFE
m



 






 

 

Here we are considering m forecasts (ft) for periods 

n+1 through n+m, and m future observed values (Yt) 

from time origin t. The RMSFE of the 24 forecasts in 

Table 4.1 is 3.6068.  

 
Table 4.1. Twenty four forecasts from model 1 from time origin t=1970:12 
 
 

Month 95% lower limit Forecasted  

value 

95% upper limit Observed value Error 

Jan-71 64.3024 72.3634 80.4243 76 3.6365 

Feb-71 53.8815 62.4085 70.9356 63 0.5914 

Mar-71 44.4151 52.9960 61.5768 53 0.0040 

Apr-71 45.4374 54.0247 62.6119 59 4.9753 

May-71 59.0981 67.6861 76.2741 74 6.3138 

Jun-71 74.3075 82.8956 91.4837 83 0.1043 

Jul-71 78.1811 86.7692 95.3574 86 -0.76927 

Aug-71 77.2594 85.8475 94.4356 86 0.1524 

Sep-71 76.0959 84.6840 93.2721 85 0.3159 

Oct-71 71.6041 80.1922 88.7803 81 0.8077 

Nov-71 66.3756 74.9637 83.5519 77 2.0362 

Dec-71 66.6636 75.2517 83.8398 74 -1.2517 

Jan-72 64.2866 73.1401 81.9936 75 1.8598 

Feb-72 53.7919 62.6765 71.5610 70 7.3234 

Mar-72 44.2001 53.0884 61.9766 55 1.9115 

Apr-72 45.1678 54.0565 62.9452 59 4.9434 

May-72 58.8083 67.6971 76.5858 74 6.3028 

Jun-72 74.0107 82.8994 91.7882 76 -6.89945 

Jul-72 77.8818 86.7705 95.6593 83 -3.7705 

Aug-72 76.9592 85.8479 94.7367 82 -3.8479 

Sep-72 75.7954 84.6841 93.5729 82 -2.6841 

Oct-72 71.3035 80.1923 89.0810 79 -1.1923 

Nov-72 66.0750 74.9637 83.8525 78 3.0362 

Dec-72 66.3630 75.2517 84.1404 78 2.7482 

RMSFE 3.6068 
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Fig. 4.1. Forecasts 24 observations from model (4.1) from time origin t=1970:12 

 

Estimated ARIMA (1,0,0) (0,1,1) 12 model for temperature series based on 1948 to 1970 realizations (absolute t 

values are in parentheses) is: 
 

12

12
ˆ(1 0.8326 )(1 0.7544 )t tX B B          (4.2) 

                     (18.7185)     (19.4392)                 ˆ 1.0163   

Table 4. 2 and in Fig. 4.2 are used to show the next 24 

months forecasts from origin t = 1970:12 and their 

rough 95% CI from model 4.1. The RMSFE is 

0.9075. 
 

Table 4.2 Twenty four forecasts from model 4.2 from time origin t =1970:12 
 

Month 

 

95% lower limit Forecasted Value 

 

95% upper limit Observed Value 

 

Error 

 

Jan-71 14.6724 16.3079 17.9433 16.2 -0.1079 

Feb-71 17.4977 19.2243 20.9508 18.5 -0.7243 

Mar-71 23.3639 25.1005 26.8372 23.5 -1.6005 

Apr-71 27.7258 29.4636 31.2014 28.2 -1.2636 

May-71 28.1863 29.9242 31.6622 28.5 -1.4242 

Jun-71 27.1008 28.8388 30.5767 29 0.1611 

Jul-71 26.7753 28.5133 30.2512 28.6 0.0866 

Aug-71 26.8686 28.6065 30.3445 27.8 -0.8065 

Sep-71 26.5942 28.3322 30.0702 27.8 -0.5322 

Oct-71 24.7104 26.4483 28.1863 26.4 -0.0483 

Nov-71 20.1105 21.8485 23.5864 21.4 -0.4485 

Dec-71 16.0209 17.7588 19.4968 18 0.2411 

Jan-72 14.6100 16.3955 18.1809 17.8 1.4044 

Feb-72 17.4631 19.2539 21.0447 17.4 -1.8539 

Mar-72 23.3192 25.1106 26.9020 26.1 0.9893 

Apr-72 27.6755 29.4670 31.2585 28.2 -1.2670 

May-72 28.1339 29.9254 31.7169 28.5 -1.4254 

Jun-72 27.0477 28.8392 30.6306 29.8 0.9608 

Jul-72 26.7219 28.5134 30.3049 29.2 0.6865 

Aug-72 26.8151 28.6066 30.3980 29.0 0.3933 

Sep-72 26.5407 28.3322 30.1237 28.5 0.1677 

Oct-72 24.6569 26.4484 28.2398 26.8 0.3516 

Nov-72 20.0570 21.8485 23.6399 22.1 0.2514 

Dec-72 15.9674 17.7588 19.5503 17.6 -0.1588 

RMSFE 0.9075 
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Fig 4.2. Forecasts 24 observations from model 4.2 from time origin t=1970:12 

 

Since the RMSFE for the above two models appeared 

smallest than all other possible models, we finally 

select those model for forecasting the unavailable 

values for two series. Estimation results for final 

ARIMA models based on realizations (1948-1972), 

by which we forecast the realizations from 1973 to 

1980 of humidity (Yt) and temperature (Xt) series are 

given below: 
                    

        
12

12
ˆ(1 0.34466 ) (1 0.7328 )t tB Y B      

                (6.1771)                     (20.6221)               ˆ 22.680   

12

12
ˆ(1 0.8295 )(1 0.7607 )t tX B B      

                           (18.7289)        (20.4427)                 ˆ 1.001   

 

Results of Investigation of Time Series Patterns 
 

Exploratory data analysis 

The study considers three climatic monthly average 

series: humidity, rainfall and temperature of Dinajpur 

district over the period 1948 to 2002. There exists a 

great diversity and complexity in these climatic 

series. Time series plot, autocorrelation function 
(ACF) and boxplots of these monthly average series 

are given below: 
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Fig 5.1. Time series plot and SACF of Humidity for 1948:1 – 2002:12 
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Fig-5.2. Time series plot and SACF of Rainfall for 1948:1 – 2002:12 
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Fig. 5.3. Time series plot and SACF of Temperature for 1948:1 – 2002:12 

 

Figs. 5.1, 5.2 and 5.3 show that the time series plots 

does not shows any trend in each series and the 

variance is constant over time. The data seem to move 

around a constant overall mean; but certain 

observations are regularly above or regularly below 

this overall mean. That is, the level of these series 

shifts in a seasonal fashion. SACF also supports this 
statement. SACF shows that a given month of each 

series is similar to the same month one year earlier, 

two years earlier and so on. These evidences imply 

that humidity, rainfall and temperature series of 

Dinajpur district have strong seasonal patters. 
 

It will be better to show that whether each seasonally 

occurring series have the same degree and variation 

through the years. It can be explicitly shown by 

boxplot. Figs. 5.4, 5.5, 5.6 show the monthly degrees 

and variations through the years which are almost 
different for each climatic series. 
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Fig. 5.4.  Boxplots of humidity 

Fig-5.4 shows monthly average humidity of Dinajpur 

district ranges from 34 (April, 1960) to 90 (August, 
1966). Humidity increases gradually from April and 

remains almost high (82-90) through July to 

September and then starts to decrease gradually from 

October. That is, the period from June to September is 
very highly humid. 
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Fig. 5.5.  Boxplots of Rainfall 

 

It can be shown from Fig. 5.5 that monthly averaged 

rainfall of Dinajpur district starts to increase gradually 

from April and remain almost heavy for the period 

June to July and gradually decreases from August. 

Rainfall is very minimal during the period November 

to March. That is, the monthly mean rainfall ranges 

from 0 mm to 1196 mm and the period June to 

September can be characterized by heavy rainfall. 
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Fig. 5.6.  Box plots of Temperature 

 

Fig. 5.6 shows monthly average temperature of 
Dinajpur district ranges from 14.5 oC to 32.5 0C. 

Temperature increases gradually from January and 

remains almost high (82-90) for the long period April 

to September and then starts to decrease gradually 

from October. That is, the temperature remains hot 
from April to September. From the Figs. 5.4, 5.5 and 

5.6, we also can summarize that in summer (June to 

September) the three climatic variables of Dinajpur 

district are positively related among each other; 
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though such relationship can not be found in winter 

(November to February). 
 

Results of tests for stochastic trends 

In this subsection, four tests were used to determine 

the presence of stochastic trends in a selected group 
of climate change data of Dinajpur district. Here four 

time series were considered namely, average, 

maximum, minimum and difference (i.e., difference 

between maximum and minimum) for each of the 

three annual climatic variables; humidity, rainfall and 

temperature over the period 1948 to 2002. That is, we 

perform four test procedures for stochastic trends on 

twelve time series over the period 1948 to 2002. Time 

series plots (Figs. 5.1, 5.2 and 5.3) of all the series are 

far less clear. Almost all the series are trending but 

the graphs cut a deterministic linear regression line 

repeatedly, which hint that these series could be trend 
stationary. So, we conduct the tests under the null 

hypothesis that the series is a random walk with drift 

whilethe alternative hypothesis is that the series is a 

trend stationary. Summary of the tests are given in 

Table 5.1 

 

Table 5.1. Univariate tests for the order of integration under the null hypothesis that the series is a random walk with 

a drift 
 

Series Test Procedures 

Lags ADF P-P KPSS Bootstrap 

Humidity (ave) 2 I(1) I(1) I(1) I(1) 

Humidity (max) 1 TS* TS TS TS 

Humidity (min) 2 I(1) TS I(1) TS 

Humidity (diff) 2 I(1) TS I(1) TS 

Rainfall (ave) 2 TS TS I(1) TS 

Rainfall (max) 3 TS TS TS TS 

Rainfall (min) 5 TS TS TS TS 

Rainfall (diff) 3 TS TS TS TS 

Temperature (ave) 2 TS TS TS TS 

Temperature (max) 2 TS TS TS TS 

Temperature (min) 1 I(1) TS I(1) TS 

Temperature (diff) 2 I(1) TS I(1) TS 
* TS = Trend Stationary 

Table 5.1 shows that ADF and KPSS give identical 

results. They show that three humidity series 
(average, minimum and difference) and two 

temperature series (minimum and difference) are I(1) 

and all other series are tend stationary. Though 

Bootstrap and P-P also shows identical results, they 

say that only humidity (average) series is I(1) rather 

than trend stationary. That is, except four series, all 

test procedures used here give same results. We also 
conduct the tests under the null hypothesis that the 

series is a random walk while the alternative 

hypothesis is that the series is stationary. Results of 

these tests are shown in Table 5.2.  

 
 

Table 5.2. Univariate tests for the order of integration under the null hypothesis that the series is a random walk 
 

Series Test Procedures 

Lags ADF P-P KPSS Bootstrap 

Humidity (ave) 2 I(1) I(1) I(1) I(1) 

Humidity (max) 1 I(1) I(1) I(0) I(1) 

Humidity (min) 2 I(1) I(1) I(1) I(1) 

Humidity (diff) 2 I(1) I(1) I(1) I(1) 

Rainfall (ave) 2 I(1) I(1) I(1) I(1) 

Rainfall (max) 3 I(1) I(1) I(0) I(1) 

Rainfall (min) 5 I(0) I(0) I(0) I(0) 

Rainfall (diff) 3 I(1) I(1) I(0) I(1) 

Temperature (ave) 2 I(1) I(1) I(0) I(1) 

Temperature (max) 2 I(1) I(1) I(0) I(1) 

Temperature (min) 1 I(1) I(1) I(1) I(1) 

Temperature (diff) 2 I(1) I(1) I(1) I(1) 

 
Table 5.2 shows that three test procedure; ADF, P-P 

and Bootstrap, show identical results for all series 

while KPSS test procedure differs with them. From 

these test results we conclude that except rainfall 
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(min), all the series is integrated of order 1, that is, they contain stochastic trends. 
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Fig. 5.7. Deterministic regression line of 4 humidity series 
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Fig. 5.8. Deterministic regression line of 4 Rainfall series 
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Fig. 5.9. Deterministic regression line of 4 Temperature series 

 
Conclusions 

The overall findings obtained from the Dickey-Fuller 

(Dickey and Fuller, 1979, 1981), Phillips-Perron 

(Phillips and Perron, 1988), KPSS (Kwiatowski, 

Phillips, Schmidt, and Shin, 1992) and Bootstrap test 
demonstrate that the annual average, minimum, 

maximum and difference series for humidity, 

temperature and rainfall of Dinajpur district are 

integrated of order 1, that is, these contain stochastic 

trends except the minimum rainfall series. So, we 

should be careful about being trapped in spurious 

regression in case of climatic variables in regression 

where we need the help of co-integration technique 

for showing causal relationship among climatic 

variables / economic and climatic variables. 
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