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ABSTRACT 

The accurate prediction of both nucleate boiling and burnout heat flux is crucial for enhancing the security and 

stability of a water-cooled pressurized reactor. Burnout phenomenon occurs when the heat transfer rate surpasses 

the critical heat flux (CHF), rapidly increasing fuel rod temperature due to a substantial drop in the convective 

heat exchange coefficient. This event can cause severe overheating and potential damage to the reactor core. 

Since no deterministic theory exists for predicting both heat fluxes, the process of obtaining accurate predictions 

is complex and not straightforward. To overcome this complexity we developed various machine learning (ML) 

algorithms for predicting boiling and burnout heat flux (BHF) in a reactor core. In this paper, three ML 

algorithms, k-nearest neighbors (KNN), Decision Tree (DT), and Artificial neural network (ANN) are developed, 

trained, and compared. The data were analyzed and processed by implementing an R programming environment 

by using different packages. The demonstrated model performance was evaluated using k-value, accuracy, cross-

validation result, and confusion matrix. By comparing  prediction efficiency and others parameter of three 

developed algorithms we finalize that ANN algorithm shows better performance than the DT and KNN algorithm 

regarding classification heat flux prediction problem. These findings are encouraging for the potential future 

implementation of machine learning techniques for heat flux along with reactor core diagnostics.  

Keywords: Nuclear Power Plant, Pressurized Water Reactor; Critical Heat Flux; KNN, Decision Tree; ANN. 

1.  INTRODUCTION 

The global reliance on nuclear power for electricity generation is growing significantly. At the end of 2022, an 

overall nuclear energy capability of about 393.8 GW(e) was achieved, with 438 reactors operational in 32 

countries. Nuclear power provided 2486.8 terawatt-hours of electricity without generating greenhouse gases, 

accounting for approximately 10% of the world's total electricity generation and more than 25% of its low-carbon 

electricity (AA.VV., 2022). The workings of a nuclear power plant are vast and intricate, so identifying anomalies 

is too challenging, despite being monitored by a vast number of sensors and thousands of operating personnel. 

The main part of the nuclear power plant (NPP) is the reactor core where the nuclear fission and neutron scattering 

reaction takes place that contains many fuel assemblies. Since a nuclear fission reaction rate is triggered by the 

thermal neutrons, the reaction produces the heat flux. So, the reactor core monitoring techniques are of utmost 

importance to identify the core anomalies and to localize and classify the problem to provide impact for plant 

safety and reliability. In this context, a highly effective approach for reactor core surveillance focuses on 

monitoring the typical variation in neutron flux as well as the heat flux (Pázsit and Demazière, 2010).  

This article offers an in-depth exploration of how ML techniques have the potential to update the predictive 

accuracy of critical heat transfer phenomena in pressurized water reactors (PWRs) for reliable plant operations. 

Two major aspects of the heat transfer process are boiling and departure from nucleate boiling or burnout heat 

flux. At the fuel rod surface, nucleate boiling occurs when the temperature is higher than saturation but lower than 

the critical heat flow and this heat flux is adequate to produce vapor bubbles. When the heat transfer surface 

experiences a considerable decline in heat transfer efficiency, it is referred to as being beyond the critical heat flux 

(CHF) or burnout heat flux, which can lead to overheating and potential damage to the fuel rod of the fuel assembly 

(Pázsit and Demazière, 2010). 

Traditional methods for predicting nucleate boiling and burnout heat flux generally rely on empirical correlations 

and mechanistic models derived from experimental data and depend upon the plant condition and configuration. 

To address these challenges, this work investigates the prediction sensitivity of three machine learning algorithms 

KNN, DT, and ANN methods to deliver more accurate and reliable predictions for PWR's safe operation. An ML 

algorithm is a subset of artificial intelligence (AI) and is classified into two types of problems during data mining 
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e.g. classification and regression (Morgan et al., 2022). In this paper classification ML problem is implemented 

for heat flux prediction. The KNN algorithm predicts the output by finding the nearest data points by measuring 

Euclidian distance in the training set to the input data and utilizing their values. Decision trees (DT) partition data 

into branches according to feature values, resulting in predictions derived from a series of decision rules. Artificial 

Neural Network (ANN) models replicate the arrangement and operations of biological neural networks, 

comprising multiple layers of interconnected neurons that develop the capability to detect patterns within the data.  

The article offers an in-depth comparison of the heat flux prediction performance exhibited by demonstrated 

models. These findings suggest that machine learning model especially artificial neural networks (ANN) and 

decision trees (DT) offers a significant improvement compared to conventional methods regarding predicting heat 

flux accuracy and plant reliability. The research also identifies prospective avenues for future exploration, such 

as incorporating real-time monitoring data to bolster model accuracy and extending the utilization of these 

methodologies to different types of reactor configurations.  

2.  RELATED WORKS 

The authors (Zhao, Salko, and Shirvan) have introduced several ML techniques for forecasting the CHF in Sub-

cooled and heat flux conditions in low-grade flow boiling regimes and identifying the optimum choice. In this 

paper (Zubair et al., 2022) the authors have demonstrated the ANN and Random Forest (RF) algorithms in 

different operating conditions for predicting critical heat flux (CHF) and that the optimum performance is provided 

by the ANN algorithm. The authors (Naimi et al., 2022) showed that the reactor fault diagnostics problems can 

be predicted more accurately by the KNN algorithm when they demonstrate ANN, KNN, and Support Vector 

Machine (SVM) techniques and use 15 different classifiers and ensembles. The authors (Demazière et al., 2020) 

developed another machine-learning technique for neutron noise-based anomaly detection and localization due to 

the low error rate. (Kubinski, Darnowski and Palmi, 2022) Authors proposed an ML algorithm for forecasting 

how nuclear reactor core characteristics or parameters will change over time in different conditions. In contrast to 

the previously mentioned studies, this investigation provides new insights. This study introduces a unique 

predictive model employing ML techniques, specifically ANN, DT, and KNN classification, to forecast the 

nucleate heat flux core boiling and burnout in PWRs. 

3.  MAIN COMPONENTS OF PWRs 

A typical PWR plant mainly consists of two circuits, which are named primary and secondary circuits or loops. 

The primary loop components are the reactor core, steam generator (SG), pressurizer, reactor coolant plant or 

main circulation pump, and several sets of hydro accumulators. The reactor core dynamics might be represented 

by a point kinetics approach. Additionally, the control rod is an essential part of the reactor core or actuators that 

control the nuclear fission reaction rate or power by absorbing thermal neutrons during the insertion into the core. 

In the primary circuit, the pressurizer is used to create the desired pressure into the core to avoid the boiling of 

coolant. Heated water is continuously transferred to the steam generator by the action of the reactor coolant pump 

to generate steam and finally supplied to the turbine in the secondary circuit. The major components of the 

secondary circuit are the turbine, generator, moisture separator, different reheaters, and feed water pump (Naimi 

et al., 2022).  

A vivid example of a PWR is the Russian design VVER-1000 and VVER-1200 reactor where the water is used 

as both moderator and coolant. A concise overview of the ideal reactor power core model is provided above table 

to keep it brief. For an extensive and grasped explanation of the NPP computational model, different actuators, 

and sensors, readers are encouraged to refer to (Vajpayee et al., 2020) the article. An overview of the plant's main 

input and output components is provided in Table 1.  

Table 1. The different variables defined for the PWR model 

Variable Definition 

Pn Thermal power of the reactor core 

ρrd Amount of reactivity 

Pp Actual pressure of the Pressurizer  

Qh Reheater heat Addition Rate 

Lw The coolant level of the Pressurizer  

msur Mass flow rate 

Psg The pressure of the Steam generator  

Ctg Factor affecting the turbine-governor valve 

wtur Speed of the Turbine 

https://www.ibm.com/topics/supervised-learning
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3.1  Reactor Core Model 

In order to simulate the reactor, a set of point kinetics equations containing thermal hydraulics parameters and six 

sets of delayed neutron precursors could be utilized. This is the overall mathematical representation of the reactor 

core model (Vajpayee et al., 2020). 

 
𝑑𝑃𝑛

𝑑𝑡
  =  

𝜌𝑡− ∑ 𝛽𝑖
6
𝑖=1

𝛬
 𝑃𝑛 +  ∑ 𝜆𝑖

6
𝑖=1 𝐶𝑖𝑛, 

(1) 

 
𝑑𝐶𝑖𝑛

𝑑𝑡
  = 𝜆𝑖  (𝑃𝑛 - 𝐶𝑖𝑛 ),            i = 1 to 6, (2) 

 
𝑑𝑇𝑓

𝑑𝑡
 = 𝐻𝑓𝑃𝑛 - 

1

𝜏𝑓
 (𝑇𝑓 − 𝑇𝑐1), (3) 

𝑑𝑇𝑐1

𝑑𝑡
 = 𝐻𝑐𝑃𝑛 + 

1

𝜏𝑐
 (𝑇𝑓 -𝑇𝑐1) - 

2

𝜏𝑟
 (𝑇𝑐1 -𝑇𝑐𝑖𝑛), (4) 

𝑑𝑇𝑐2

𝑑𝑡
 = 𝐻𝑐𝑃𝑛 + 

1

𝜏𝑐
 (𝑇𝑓 -𝑇𝑐1) - 

2

𝜏𝑟
 (𝑇𝑐2 -𝑇𝑐1), (5) 

 

𝜌𝑡  = 𝜌𝑟𝑑 + 𝛼𝑓𝑇𝑓 + 𝛼𝑐 (𝑇𝑐1 +𝑇𝑐2), (6) 

 
𝑑𝜌𝑟𝑑

𝑑𝑡
 = 𝐺𝑣𝑟𝑑. (7) 

 

In the Equations (1)-(7) are given above, 𝑃𝑛 indicates the normalization constant of the neutronic power; 𝐶𝑖𝑛 

denotes the concentrations of the normalized delayed neutron precursors, 𝛽𝑖  is the effective delayed neutron 

fractions, and 𝜆𝑖 is the decay constant. In the aforementioned equation lifetime of the prompt neutron represented 

by𝛬, 𝜌𝑡 indicates the overall reactivity of the core and  𝜌𝑟𝑑 is the reactivity of the Boron control rod. Moreover, 𝑇𝑓, 

𝑇𝑐1, and 𝑇𝑐2 represent the temperature of the fuel rod, and the temperatures in the coolant node 1 and 2 respectively. 

Also here, 𝐻𝑓 and 𝐻𝑐  are the two constant-coefficient values, 𝜏𝑐, and 𝜏𝑟  represent the time constants parameter; 

𝛼𝑓 and 𝛼𝑐 refer to the coefficients of reactivity for fuel and coolant at different temperatures, In addition, the 

reactivity worth denoted by 𝐺 and finally,  𝑣𝑟𝑑 the velocity of the control rod. 

3.2  Data Description and Partitioning 

The heat flux acoustic spectrum data was generated from the thermal hydraulics laboratory at Obninsk Institute 

for Nuclear Power Engineering, (OINPE, Moscow, Obninsk, Russia) by implementing a simulation technique in 

normal and transient conditions due to the unavailability of real NPP operational data. This acoustics spectrum 

data consists of 173 rows and 201 columns. The 201 number columns indicate the real classification outcome of 

boiling and burnout heat flux data. This data spectrum depends upon the reactor core temperature (T), Pressure 

(P), and mass flow rate (G) in both normal and transient conditions. A variety of heat flux statistics were assessed 

in this paper and created for boiling and burnout heat flux prediction by implementing different machine learning 

algorithms for classification problems. This task was achieved by splitting the training and testing data set as one 

row is testing data and the rest of it evenly divided as training data and validation data and iterating all row data. 

Then compare the predicted data with the actual heat flux categorical data or column no 201 data. Finally, using 

different packages, confusion matrix, and several parameters the proposed machine learning (ML) algorithms 

predict the accurate heat flux and show their individual prediction accuracy and other parameters.  

The study of nucleate boiling and burnout flux phenomenon of coolant in a reactor core is of utmost important 

work for fuel rod safety. The authors (Theofanous et al., 2002) showed a detailed explanation of the boiling and 

burnout phenomenon of coolant in the case of pool boiling of fluid. Fig.1. shows the boiling and burnout heat flux 

scenario of liquid coolant. 

4. PROGRAMMING ENVIRONMENT 

The R programming environment was selected in this work to illustrate the machine learning techniques for heat 

flux prediction instead of Python and other cutting-edge equivalent languages. The reason behind choosing R 

programming due to its vast advantages compared to other languages. The main positive aspects of R language 

are the availability of its open source, this programming language is smart, simple, and effective, it can operate 

on all systems and has many loops, conditionals, and user-fixed recursive functions, and input and output features 

and it has splendid integration capabilities with other languages and there is big network support. Authors (Kaya 

et al., 2019) showed Intrigued interest in using the R platform for spatial data analysis and described briefly the 

working procedure of the R studio platform. 
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Figure 1: The pool boiling curve (Theofanous et al., 2002). 

5. CLASSIFICATION ALGORITHMS 

Various ML methods are employed for both classification and regression tasks in the NPP diagnosis process. 

Three distinct families of machine learning classification algorithms from the R studio environment were 

presented in this paper to estimate their availability for the boiling and burnout classification heat flux of PWRs. 

5.1  K-Nearest Neighbor (KNN) Algorithm 

A well-known algorithm is the KNN which is a supervised or regulated ML algorithm. The K-Nearest Neighbors 

(KNN) algorithm, frequently employed in pattern identification classification tasks, determines the category of 

unknown parameters by calculating how far it is from the closest training data. This technique uses the similarity 

between an unlabeled and to classify it, labeled samples from the training set. This method has been extensively 

used in areas like visual data processing, statistical pattern identification, and data extraction. (Naimi  et al., 2022). 

Now day’s KNN technique becoming more popular for fault diagnostics in the manufacturing industry (He and 

Wang, 2007, 2008). K-nearest neighbors (KNN) approaches find the k-nearest labeled samples in the training 

dataset for an unlabeled sample x by using distance metrics.  

                                 

Figure 2:  K-NN algorithm flowchart for the classification data prediction. 

Generally, Euclidean distance metrics are utilized to evaluate the separation between two points in space. For 

instance, if p and q are Euclidean points, where p = (p1, p2,…, pn) and q = (q1, q2 ,…, qn), then the following 

method can be used to calculate the Euclidean distance (Chen et al., 2020). 
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 Distance (p, q) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 

 Distance (p, q) = √∑ (𝑝𝑖 − 𝑞𝑖)
2𝑛

𝑖=1                                             (8) 

The Figure 2 in the following indicates the KNN classification algorithm flowchart for general data preparation 

and final outcomes heat flux prediction. 

5.2  Decision Tree (DT) 

Another machine learning technique that has been adopted here for heat flux classification problem prediction is 

the decision tree algorithm. To make decisions, this instance-based algorithm uses the concepts of inductive 

learning. A top-down recursive methodology is employed in the DT technique. Determine each non-leaf node's 

appropriate sample set's properties from the root node. Based on the test findings, several sub-sample sets are 

created from the training sample set. 

Every subsample set creates a new root node, where the demarcation procedure described before is carried out 

once again. Repeat the process successively until the specific termination conditions are met. A rule in the DT is 

represented by the entire path that leads between a leaf node and the root node. There are various types of decision 

tree algorithms are popular in data science. Some of them are Iterative Dichotomies 3 (ID3) and Successor of ID3 

(C4.5) methods are applied for fault diagnostics in NPPs (Mu and Xia, 2010). Additional popular decision tree 

algorithms are classification and regression trees in the data mining industry. The authors (Charbuty and 

Abdulazeez, 2021) presented a model for ML language's just classification based on the DT algorithm. This work 

established a classification-based DT algorithm technique for the prediction of reactor core heat flux.  

For the decision tree algorithm, the Entropy function is introduced to evaluate a dataset's impurity or randomness, 

Entropy is 0 (pure) if the data is homogeneous, meaning that all of the elements are similar, if the elements are 

equally divided, however, entropy increases toward 1 (impure). The entropy of classifying set S concerning c 

asserts that if the target G displays variability with different attribute values (Xihui et al. 2019) as described in 

Equation (9). 

Entropy (S) = ∑ 𝑃𝑖 log2(𝑃𝑖)
𝑐
𝑖=1                     (9) 

Where 𝑃𝑖  is the subset's sample number divided by the value of i-th attributes. 

 

            

Figure 3: Decision Tree algorithm flowchart for the classification data prediction 

5.3  Artificial Neural Network (ANN) 

The human brain serves as the biological model for artificial neural networks, a unique and efficient type of 

machine-learning approach. In such a network, there are units known as neurons, which are interconnected akin 

to synapses transmitting data to additional natural neurons. The neurons are arranged into a minimum of three 

layers in a basic Multilayer Perceptron (MLP) neural network: input, one or more hidden layers, and output. The 

layer that takes input parameters and forwards them to a hidden layer is termed the input layer. Conversely, the 

output layer receives information from the hidden layer and generates the final output (Kubinski, Darnowski and 

Palmi, 2022), (Zubair et al., 2022). The hidden layer also consists of several nonlinear activation functions that 
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can conduct linear and nonlinear relations with input and output (Kalogirou, 2000), (Rodriguez-Galiano et al., 

2015). 

Let us consider the function h (ℎ1… ℎ𝑛) defined as the hidden layer and y (𝑦1… 𝑦𝑁)  is the output layer and 

those are expressed by the following equations: 

ℎ𝑘 = 𝑓1 (𝑤𝑥ℎx + 𝑏ℎ),     

𝑦𝑘  = 𝑓2 (𝑤𝑦ℎ ℎ𝑘 + 𝑏𝑦),     k = [1,…,N]       

(10) 

(11) 

In the following equations, x denotes the input vector and the weight matrix is 𝑤, for example  𝑤𝑥ℎ is the weight 

matrix of the hidden layer input. The bias vector represent as 𝑏, For example 𝑏ℎ is called the hidden bias vector. 

And 𝑓1, 𝑓2 represents the sigmoid activation function and the linear activation function (Naimi et al., 2022). 

 

Figure 4: Working structure of Artificial Neural Network (ANN) Algorithm. 

6.  RESULTS AND DISCUSSION 

In this work, an effective machine learning algorithm was developed and proposed for the heat flux prediction 

according to its higher prediction capacity. By analyzing different prediction parameters, we could propose that 

ANN algorithm has shown approximately 96% prediction performance for both heat flux prediction. The essential 

figure and different predicting parameters that are generated from the R language environment are described 

concisely for three proposed languages in below. 

6.1  KNN Classifier 

The first developed algorithm is a supervised language named as the KNN algorithm technique. It operates on a 

majority basis sample between training and testing data by measuring the Euclidean distances and indicating how 

far individuals are located from each other. In this study, a core heat flux dataset was studied for the boiling and 

burnout heat flux classification prediction by studying the KNN algorithm in R programming environment and 

achieved the following figure for model accuracy prediction with different k value (k=1 to 20).   

6.2  Decision Tree (DT) Classifier 

We have also demonstrated a decision tree (DT) algorithm in an R environment for predicting nucleate boiling 

and burnout heat flux. For assessing the predicting performance of a proposed algorithm it is important to ensure 

it can generalize effectively to new data. Cross-validation is a commonly utilized technique to accomplish this 

since it gives a projection of the model's performance on fresh, untested data ( Nti et al. 2021). A more reliable 

performance estimate is produced as a result of the model's evaluation over many data subsets, which addresses 

the problem of variability in the training and validation data. It provides a more reliable evaluation of a model's 

performance than depending just on one train-test split. 

Table 2: Different parametric values for tree construction Decision Tree (DT) classifier. 

CP NSPLIT REL Rel Error Xerror Xstd 

0.195312 0 1.00000 1.00000 0.099220 

0.093750 2 0.60938 0.78125 0.093161 

0.046875 4 0.42188 0.70312 0.090159 

0.015625 7 0.28125 0.76562 0.092599 

0.000100 8 0.26562 0.75000 0.092018 

Each entry in the table at the bottom of the output corresponds to a tree in the sequence created by pruning. Now 

look at each column in the table below, where CP stands for the complexity parameter. For higher complexity 

parameters are associated with less complex models and vice versa. The quantity of splits in the tree is denoted 

by the term "nsplit". Keep in mind that 1 + nsplit equals the total number of tree terminal nodes. Additionally, the 
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"rel" error is the tree's RSS training error, normalized by the total variance of the response. Lastly, the cross-

validation standard error is denoted by "xstd" and the cross-validation error estimate by "xerror." 

  
Figure 5: Graphical representation of KNN model 

accuracy for heat flux prediction with different ‘K’ 

values. 

Figure 6: Cross-validation (CV) vs Complexity 

Parameter (CP) graph for DT model accuracy 

assessment. 

Figure 6. Shows the cross-validation error versus complexity parameter (cp) graph for evaluating the performance 

of the DT algorithm for heat flux prediction. The horizontal braking line marks the average value of the CV curve. 

6.2.1  Tree Construction 

A DT is a flowchart-like model enabled for making decisions or predictions. There are multiple nodes representing 

decisions or attribute tests, branches representing the decisions' outcomes, and leaf nodes representing the 

conclusions or forecasts. Each leaf node represents a continuous value or a class label, each internal node 

represents an attribute test, and each branch represents the outcome of the test. The main components of an ideal 

decision tree figure are root nodes, internal nodes, branches, and leaf nodes. Where root nodes indicate the entire 

data set for starting tree, internal nodes show the test or decision on attributes and branches is the decision or 

outcome during prior to the final step. Finally, the leaf nodes suggest the final decision or prediction class. For 

the heat flux input data, the following variables are actually used in tree construction for boiling and burnout heat 

flux prediction. Those are, V109, V111, V142, V154, V19, V44, V60, and V80 with root node error: 64/173 = 

0.36994 and n=173. 

  

 

 

Figure 7. Construction tree for boiling and burnout heat 

flux prediction in DT model. 

Figure 8. Construction pruned tree for boiling and 

burnout heat flux prediction in DT model. 

6.2.2  Pruning Tree 

Pruning is a method used in machine learning to compress data, specifically aimed at decreasing the size of 

decision trees. It achieves this by eliminating parts of the tree that are deemed non-critical or redundant for 

classifying instances. By simplifying the final classifier, pruning contributes to enhancing predictive accuracy 

through the reduction of over fitting and enhance the robustness. Finally, prune the aforementioned tree to the 

desired size using prune (fit, cp=) in R and obtained the following Figure.8. As can be seen from the figure, the 

heat flux prediction summary of the decision tree (DT) algorithm where two heat flux classifiers are predicted the 

satisfactory accuracy. 

Heat flux spectrum Heat flux spectrum 
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6.3  ANN Classifier 

Lastly, another popular machine learning algorithm was proposed the Artificial Neural Network or ANN 

algorithm for reactor core boiling and burnout heat flux prediction due to its higher predicting accuracy. In 

essence, it behaves like a real neuron and divides into several layers, such as the input, hidden, and output layers. 

These layers are connected and exchange signals utilizing various activation functions, ultimately producing the 

intended output. 

To train the heat flux data iterating a total of 173 rows of data is considered as one row is testing and the rest is 

training data for classification outcome prediction. The visual representation diagram of the proposed algorithm 

is shown below and it divided into input layer, hidden layer where weighting the input data by using activation 

functions and transmitting into the output layer for boiling and burnout heat flux prediction. The technique looks 

for a set of weights to make sure that the network's output vector for each input vector roughly reflects the intended 

output vector. If there is a well-defined and constrained set of input-output cases, or patterns, the total error in the 

network's performance with a given set of weights can be assessed by comparing the expected and actual output 

vectors for each pattern. One common method for this comparison is the least squares approach and a “neuralnet” 

package is used to complete this task. 

 

 

 

 

Figure 9. Visual representation of ANN algorithm working principle for heat flux prediction. 

Creating an improved machine learning algorithm is the primary goal of this work for identifying both heat flux 

predictions. Although there are some usual techniques for heat flux prediction implementation of the machine 

learning technique is completely advanced and fruitful. In this study, three ML algorithms the KNN, DT, and 

ANN are developed to test the performance of heat flux data for boiling and burnout class prediction. Three 

algorithms are trained to classify the boiling and burnout heat data to assist reactor operational personnel for safe 

and reliable NPP operation. 

In the R programming environment, a confusion matrix statistics technique was employed to assess the 

performance of the generated algorithms.  A table that helps assess the efficiency of a classification technique by 

summarizing and illuminating its performance is called a confusion matrix. The following representations of 

accuracy, precision, and recall can be computed using the confusion matrix (Naimi, Deng et al. 2022). 

Predicted Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
         (12) 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
        (13) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (14) 

Where, TP is the true positive, TN refers to the true negative, FP is the false positive, and FN, indicates the false 

negative. 

Table 3 represents the different parametric values of the three developed algorithms for better prediction accuracy. 

Here CI- means the Confidence Interval parameter in the confusion matrix, it indicates a range where the true 

value is expected to be found, according to a specific level of confidence. In this study maximum CI is 95% was 

found for ANN and DT algorithms. If the null hypothesis is correct, the P-value indicates the probability that the 

alternative hypothesis will have an impact.  
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Table 3: Confusion matrix results parameter of the heat flux dataset for KNN, DT, and ANN classifiers. 

Developed 

Algorithms 

CI-

Value

(%) 

P-Value Kappa 
Sensitivity/

Recall 
Specificity 

Precision 

(%) 

Balanced 

Accuracy 

(%) 

Total 

Accuracy 

(%) 

KNN 90 1.6×10-5 0.6188 0.7959 0.8213 86.00 80.82 80.35 

DT 95 1.7×10-5 0.6506 0.8361 0.8627 93.58 84.94 84.40 

ANN 95 2×10-16 0.9146 0.9450 0.9844 99.04 96.47 95.95 

The minimum P value has been found here for the ANN algorithm, which means this algorithm is more accurate 

than others for class prediction. The Kappa coefficient assesses the alignment between classification outcomes 

and the true values, a kappa value of 1 indicates absolute agreement, whereas a value of 0 indicates no agreement. 

From table.3 we found that the Kappa value is less for KNN than DT and ANN algorithms. For ANN the Kappa 

coefficient is close to 1, which means the predicted class and the actual class are nearly the same. The ratio of true 

positive predictions to all positive cases is the definition of sensitivity. It is also called as the true positive rate 

(TPR) or recall (REC). The ideal sensitivity score is 1, while the worst score is 0. The best sensitivity or recall 

score has been found 0.9450 for the ANN algorithm than others. It depicts the fact that the ANN algorithm predicts 

more true positive classes for reactor core heat flux. The specificity of another parameter is determined by dividing 

the total number of real negative events by the ratio of true negative cases. It is also referred to as the true negative 

rate (TNR). The optimal specificity score is 1, and the lowest is 0. In this study, the lowest specificity has been 

found for the KNN algorithm and the highest for the ANN algorithm. These results also suggest that the ANN 

algorithm is better than other algorithms for classification cases.  

Additionally, precision is a statistic that counts the percentage of accurately predicted positive instances among 

all positive predictions to determine how accurate positive predictions are. The ANN algorithm shows about 

99.04% result for the prediction of true positive class. In addition, the balanced accuracy represents the arithmetic 

mean between sensitivity and specificity. As usual like the prior parameter, the balanced accuracy is low for the 

KNN algorithm and highest at 96.47% for the ANN algorithm. Finally, the most important indicator is accuracy, 

it calculates the percentage of cases that are correctly classified overall versus all cases. The KNN algorithm 

shows an accuracy is 80.35 for k=3, moreover, The DT and ANN algorithms show prediction accuracy of about 

84.40% and 95.95% respectively for the two types of heat flux classification studies. So the ANN algorithm is 

unquestionably a superior performer compared to the other techniques. Although the DT classifier exhibits higher 

overall accuracy compared to the KNN classifier. Intersetingly, the 2024 Nobel Prize in Physics was achieved by 

John Hopfield and Geoffrey Hinton for the fundamental discoveries and inventions that enable machine learning 

with Artificial Neural Networks. Undoubtedly one can see that, the ANN algorithm is the best one for the nuclear 

reactor core heat flux prediction by comparing the different parametric values including the overall accuracy.  

There is considerable scope for further research, by enhancing the training dataset to adding random heat flux and 

developed more ML algorithms to improve the prediction accuracy and also incorporating more detailed 

mathematical technique or by fluctuating temperature, pressure mass flow rate, etc. Additionally, the input 

database might contain more technological parameters. In the long run, these parameters could be utilized to 

enhance the prediction accuracy and calculate additional nuclear reactor core output parameters. This new 

technique might enable to enhance the safety of a reactor core to assist the NPP operational personnel in safe and 

reliable NPP operation. 

7. CONCLUSIONS 

In this work, it is aimed to develop an efficient AI-based machine learning algorithm for reactor core heat flux 

prediction from the acoustic heat flux spectrum dataset. In the diagnostic process, data was collected from the 

simulation technique of a PWR reactor and utilized for training the classifiers. The data set was split into training 

and testing set and finally the prediction performance was compared with the testing set. An in-depth analysis was 

conducted to compare classifier performance using the confusion matrices for KNN, CART and ANN algorithms.  

The proposed ANN classification methods shows robust performance and are highly effective in predicting the 

boiling and burnout heat flux in PWR systems. Thus it has been cleared that, the ANN algorithm technique is 

more benificial for heat flux prediction to enhance the safety and reliability of a reactor core by providing exact 

instruction to the NPP operaing personnels. 
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