Abstract

Background: HbA1c can be measured by different methods. Enzymatic, boronate affinity chromatographic and cation-exchange high performance liquid chromatographic (HPLC) methods are considered as gold standard methods. To make the test cost-effective many laboratories use the immunological method installed in a chemistry analyzer. Objective: To compare the values of HbA1c measured by high performance liquid chromatographic method and immunological method in two laboratory settings. Materials and Methods: This observational and comparative study was conducted in Bangladesh Institute of Health Sciences (BIHS) and Enam Medical College, Savar, Dhaka. HbA1c levels measured by HPLC in BIHS were compared with that measured by immunological method in Enam Medical College, Savar, Dhaka. p values <0.05 were considered significant. Results: Statistically no difference was observed in mean HbA1c% between two methods in ≤7.0% HbA1c group and 7.1-10.0% HbA1c group. Significant statistical difference was found in mean HbA1c >10.0% group, but it was within acceptable limit. Conclusion: HbA1c can be measured by immunological method installed in an automated chemistry analyzer to make the test cost-effective. But HPLC method is preferable.

Key words: High performance liquid chromatographic method, Immunological method, HbA1c

Introduction

Diabetes mellitus is a syndrome of impaired carbohydrate, fat and protein metabolism caused by either lack of insulin secretion or decreased sensitivity of the tissues to insulin. It is characterized by hyperglycemia resulting from the body’s inability to utilize glucose for energy. In type 1 diabetes, the pancreas cannot produce insulin and glucose in the blood cannot get entry inside the cell to be metabolized to provide energy. In type 2 diabetes, either the pancreas cannot produce enough insulin or the tissues of the body are insensitive to insulin. The complications of diabetes, involving the eyes, kidneys, nerves and blood vessels of heart, brain, extremities are common to both types of diabetes. Currently more than 5% of the world populations are affected by diabetes and it is getting more and more epidemic.

Management of diabetes requires the long term maintenance of blood glucose level as close as possible to a normal level to minimize the complications of diabetes. Blood glucose measurement is an indication of the patient’s immediate past condition (hours). It cannot speak of the true status of blood glucose regulation. An accurate index of the mean blood glucose concentration may be obtained.

1. Professor, Department of Biochemistry, Enam Medical College, Savar, Dhaka
2. Scientific Officer, Biochemistry Laboratory, Enam Medical College Hospital, Savar, Dhaka
3. Senior Scientific Officer, Department of Clinical Biochemistry, Bangladesh Institute of Health Sciences, Dhaka

Correspondence Md. Aminul Haque Khan, Email: aminhkhan@yahoo.com
only by the measurement of HbA1c every two to three months.4-6 HbA1c can also be translated to average blood glucose (eAG) to get the approximate plasma glucose level.7

HbA1c can be measured by immunological, enzymatic, boronate affinity chromatographic and cation-exchange high performance liquid chromatographic (HPLC) methods.8 It can also be measured by electrophoresis. Enzymatic and boronate affinity chromatographic and HPLC methods are considered as gold standard methods to measure HbA1c. But it is not possible to install these methods in all laboratory settings, especially in the developing countries like ours. Measurement of HbA1c by electrophoresis is also cumbersome and costly. For HbA1c measurement, many laboratories use the immunological method installed in a chemistry analyzer to make the test cost-effective. We designed this study to compare the values of HbA1c measured by HPLC method and immunological method in two laboratory settings.

Materials and Methods

This observational and comparative study was done in the department of Clinical Biochemistry, Bangladesh Institute of Health Sciences (BIHS), Dhaka and the department of Biochemistry, Enam Medical College, Savar, Dhaka during the period of July 2011 to December 2011. Sixty specimens for measurement of HbA1c levels by HPLC method in Bangladesh Institute of Health Sciences were included for this study. Twenty specimens had HbA1c level ≤7.0%, 20 had 7.1 to 10% and 20 were of >10%. These specimens were also measured for HbA1c levels in Enam Medical College Hospital laboratory by immunoassay method. Results by these two methods were compared by appropriate statistical analyses.

HPLC method

We used the Bio-Rad D-10TM Hemoglobin A\textsubscript{1c} program which is intended for the percent determination of HbA1c in human whole blood. The D-10 Hemoglobin A\textsubscript{1c} Program is based on chromatographic separation of HbA1c on a cation exchange cartridge. Separation is optimized to minimize interferences from hemoglobin variants, labile A\textsubscript{1c} and carbamylated hemoglobin. The D-10TM Hemoglobin A\textsubscript{1c} program also offers automatic sampling from a primary whole blood tube, followed by sample dilution and an analysis time of three minutes per sample.

The samples are automatically diluted on the D-10 and injected into the analytical cartridge. The D-10 delivers a programmed buffer gradient of increasing ionic strength to the cartridge where the hemoglobin is separated based on their ionic interactions with the cartridge material. The separated hemoglobin then passes through the flow cell of the filter photometer where changes in the absorbance are measured at 415 nanometer wavelength. The D-10 software performs reduction of raw data collected from each analysis. Two-level calibration is used for quantification of the HbA1c values. A sample report and a chromatogram are generated for each sample. The A\textsubscript{1c} area is calculated using an exponentially modified Gaussian (EMG) algorithm that excludes the labile HbA1c and carbamylated peak area from the A\textsubscript{1c} peak area.

![Patient report](image.png)

Fig 1. Representative chromatogram of ion-exchange HPLC (shaded area indicates the area of HbA\textsubscript{1c} eluent)
Immunoassay method

We used the Beckman Coulter AU480 analyzer. The absolute HbA1c and total hemoglobin (THb) values generated as part of the HbA1c assay are intended for the quantitative determination of hemoglobin A1c concentration as a percentage of total hemoglobin in human whole blood.

The assay for percent HbA1c involves the use of four reagents: Total hemoglobin R1, HbA1c R1 antibody reagent, HbA1c R2 agglutinator and hemoglobin denaturant. In the pre-treatment step the whole blood is mixed with hemoglobin denaturant in a 1:41 dilution and incubated for a minimum of five minutes at room temperature. The red blood cells are lysed and the hemoglobin chain is hydrolyzed by the protease present in the reagent. Total hemoglobin is measured via the conversion of all hemoglobin derivatives into alkaline hematin in the alkaline solution of a non-ionic detergent. Addition of the pre-treated blood sample to the total hemoglobin reagent results in a green solution which is measured at 600 nm wavelength. HbA1c is measured in a latex agglutination inhibition assay. An agglutinator, consisting of a synthetic polymer containing multiple copies of the immunoreactive portion of HbA1c, causes agglutination of latex coated with HbA1c specific mouse monoclonal antibodies. In the absence of HbA1c in the sample, the antibody-coated microparticles in the HbA1c R1 and the agglutinator in the HbA1c R2 will agglutinate. Agglutination leads to an increase in the absorbance of the suspension. The presence of HbA1c in the sample results in a decrease in the rate of agglutination of the HbA1c R1 and the agglutinator in the HbA1c reagent R2. The increase in absorbance is therefore inversely proportional to the concentration of HbA1c in the sample. The increase in absorbance due to agglutination is measured at 700 nm wavelength.

Calibration and traceability

Calibrator 1 is used for calibration of the total hemoglobin assay. Calibrators 1 to 6 are used for calibration of HbA1c assay. The calibrator HbA1c values are traceable to the International Federation of Clinical Chemistry (IFCC) HbA1c reference method via IFCC HbA1c reference material. Total hemoglobin values assigned to the total hemoglobin calibrator are traceable to the Institute for Reference Materials and Measurements (IRMM) hemoglobin cyanide standard (BCR-522). The relationship between results from the National Glycohemoglobin Standardization Program (NGSP) network (Diabetes Control and Complications Trial, DCCT aligned) and the IFCC network has been evaluated, and a Master Equation, as mentioned below, has been developed for interconversion of results from IFCC to DCCT/NGSP units.

\[
\text{DCCT/NGSP} = (0.915 \times \text{IFCC}) + 2.15
\]

Definition of the relationship between the two networks links the IFCC traceable results to clinically meaningful HbA1c results from the DCCT and the United Kingdom Prospective Diabetes Study (UKPDS). The Master Equation also provides these DCCT results with traceability to a higher order reference method.

Percent HbA1c results generated during this assay are automatically recalculated to DCCT aligned units by the instrument, using the IFCC approved Master Equation. Results are therefore expressed in DCCT aligned units as recommended by the IFCC.

Statistical analysis

Statistical analyses were performed by Paired t test, Bland-Altman plot and Pearson’s test using MedCalc® version 11.4 for Windows. p values <0.05 were considered significant.

Results

Table I shows the mean HbA1c % and comparison in different HbA1c levels by two methods. In ≤7.0% HbA1c group it was 6.27 ± 0.48% by HPLC method in D-10 analyzer and 6.11 ± 0.62% by immunological method in Beckman Coulter AU480 system. In 7.1–10% HbA1c group it was 8.24 ± 0.83% by HPLC method in D-10 analyzer and 8.16 ± 1.07% by immunological method in Beckman Coulter AU480 system. In >10.0% HbA1c group it was 12.66 ± 2.06% by HPLC method in D-10 analyzer and 11.98 ± 2.29% by immunological method in Beckman Coulter AU480 system.
Table 1: Mean HbA1c% in different HbA1c levels by two methods

<table>
<thead>
<tr>
<th>HbA1c level</th>
<th>Methods</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPLC</td>
<td>Immunological</td>
</tr>
<tr>
<td>≤ 7.0%</td>
<td>6.27 ± 0.48%</td>
<td>6.11 ± 0.62%</td>
</tr>
<tr>
<td>(n=20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1–10%</td>
<td>8.24 ± 0.83%</td>
<td>8.16 ± 1.07%</td>
</tr>
<tr>
<td>(n=20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10.0%</td>
<td>12.66 ± 2.06%</td>
<td>11.98 ± 2.29%</td>
</tr>
<tr>
<td>(n=20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The bias of HbA1c measured by immunological method against HPLC method was 2.6% for HbA1c ≤ 7.0%, 0.7% for HbA1c range of 7.1–10% and 5.4% for HbA1c >10% (Fig 2). The correlation coefficients of HbA1c measured by HPLC and immunoassay were 0.671 (p=0.0017) for HbA1c ≤ 7.0%, 0.588 (p=0.0050) for HbA1c range of 7.1–10.0% and 0.870 (p<0.0001) for HbA1c >10.0%. Casewise performance of the two methods in different HbA1c ranges is presented in Fig 3.

Discussion

In this study we found no significant difference in HbA1c values between the two methods (HPLC in D-10 analyzer and immunological method in Beckman Coulter AU480 system) in ≤ 7.0% and 7.1–10% ranges of HbA1c levels. But there was significant difference in HbA1c values between the two methods (HPLC in D-10 analyzer and immunological method in Beckman Coulter AU480 system) in >10.0% range. But in these cases the percentage of difference against HPLC method was 5.4% which was very close to acceptable limit of 5%. Moreover the correlation coefficients between these two methods were strong in different HbA1c ranges. It was also evident from the casewise...
performance of the two methods that there was no systemic underestimation or overestimation, values of HbA1c were randomly scattered around the HbA1c values measured by HPLC methods. So, it can be concluded that by having proper and regular calibration and by undertaking strict quality control measures in accordance with good laboratory practices HbA1c can also be measured by immunological method installed in a chemistry analyzer to make the test cost-effective. However, more studies in different laboratory settings are recommended.

References