Review Article

Treatment with a proton pump inhibitor improves glycaemic control in type 2 diabetic patients.

Shusmita Saha¹, Achinta N. Chowdhury².

¹Professor (C.C), Department of Pharmacology, Dhaka National Medical College, Dhaka, ²Professor (C.C), Department of Biochemistry, Dhaka National Medical College, Dhaka.

Abstract

Oral hypoglycemic medications sometimes do not control type 2 diabetes well. Proton pump inhibitors as adjunctive therapy might improve diabetes control through increasing serum gastrin & fasting insulin levels. Proton pump inhibitor therapy also associated with lower glycosylated hemoglobin levels in diabetes.

Introduction

Proton pump inhibitors are first introduced in the late 1980 & they are used for the treatment of acid-peptic disorders. PPIs are now most widely prescribed drugs worldwide due to their outstanding efficacy and safety. PPIs available for clinical uses are-omeprazole, lansoprazole, rabeprazole, pantoprazole and esomeprazole.

All the PPIs are substituted benzimidazoles that resembles H_2 antagonists in structure that have a completely different mechanism of action. PPIs inhibit both fasting and meal-stimulated secretion because they block the final common pathway of acid secretion, the proton pump1. In standard doses, PPIs inhibit 90-98% of 24-hour acid secretion.

Clinical uses of PPI1:

- a) Gastro-esophageal reflux disease.
- b) Peptic ulcer disease:
 - 1) H. pylory-associated ulcers.
 - 2) NSAID-associated ulcers.
 - 3) Prevention of re-bleeding from peptic ulcers.
- c) Nonulcer dyspepsia.
- d) Prevention of stress-related mucosal bleeding.
- e) Gastrinoma and other hypersecretory conditions.

Proton pump inhibitors might be useful as adjunctive therapy for type-II diabetes mellitus.²

DM:

Type-II diabetes is characterized by insulin resistance and/or deficient pancreatic β -cell mass or production and secretion of insulin.²

Common treatments of type 2 diabetes may modify

insulin sensitivity, increase insulin secretion, or in some cases either reduce beta-cell dysfunction or slow their degradation.³

Effect of PPIs:

A physiological effect of acid suppression with PPIs is a mild/modest hypergastrinemia which occurs with all PPIs.⁴ Gastrin is known to be the major regulator of the secretory response to a protein meal, while somatostatin is a potent inhibitor of gastrin and histamine synthesis and release and therefore, of gastric acid secretion.⁵

In rodents, gastrin induces islet β -cell neogenesis^{6,7} and in vitro studies, this hormone increases the β -cell mass.⁸ A few retrospective studies in adults with diabetes appear to have shown that PPIs are associated with better glycemic control. Mefford et al⁹ compared HbA1c levels from type 2 diabetic patients taking PPIs (7%) and type 2 diabetic not taking them (7.6%), obtaining significant differences.

Gastrin has shown to induce β -cell proliferation and neogenesis in various model systems, and also appears to increase the insulin content of individual β -cells. ¹⁰ By blocking gastric acid production, proton pump inhibitors (PPIs) remove negative feedback on gastrin production by entero-chromaffin cells. In a rodent model of type 2 diabetes treatment with the PPI lansoprazole increased serum gastrin that was associated with improved glycemic and increased pancreatic insulin content. ¹¹

Different research evidence:

A research work was done from hospital of spain by Diana Boj et el.¹²

Glycemic control result shown in Table:

	Tetal	halla	Astformia	idadra	Others antiabatis drays
Withou PPI					
HbA1C (%)	7.3	7.6	7.4	7.2	8.0
SD(%)	1.4	1.5	1.6	1.1	1.2
n	43	19	24	11	4
With PPI					
HbA1C (%)	6.7	6.8	6.7	6.7	7.2
SD(%)	1.0	0.8	1.0	0.7	1.2
n	54	28	2.3	10	13
Absolute difference	-0.6	-0.8	-0.7	-0.5	-0.8
ρ value	0.018	0.022	NS	NS	NS

This study was conducted within total 97 patients admitted to hospital of the year 2010 who had a recent HbA₁c measurement. It compared HbA₁c levels of those taking PPIs and those not. The average HbA₁c level was 7.0% \pm 1.2%. Overall PPI consumption was 55.7%. HbA₁c was significantly lower in individuals who took PPIs - 0.6%, people who used PPIs with some type of insulin therapy had a HbA₁c reduction by - 0.8%. For the rest of subgroup analysis based on the antidiabetic drug used, PPI consumption always exhibited lower HbA₁c levels. 12

Another research was done in USA by I.N.Mefford et al.¹³ It was a case report. A 43 year old man with type 2 diabetes, opposed to insulin use and poorly responsive to oral agents over 6 years, was placed on 40-mg twice daily omeprazole. A linear decline in daily fasting blood glucose was observed throughout the first two months treatment. Initial fasting blood glucose, 240mg/dl at the start of treatment, declined to 138mg/dl at the end of 8 weeks. HbA1c was reduced from 11.9% to 8.2%, then sustained at 8.1% after four months. Glucose, insulin, and C-peptide response to a 2-hour glucose tolerance test were consistently improved across this time period.¹³

Fig. -l: Effect of twice daily 40mg omeprazole treatment on serum gastrin and hemoglobin A1c in a type 2

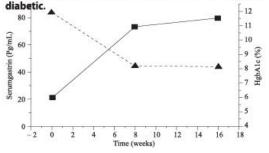
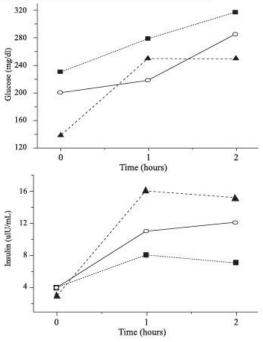



Fig.-II: 2hr glucose tolerance test effects on blood glucose (a), insulin (b) after twice daily 40mg omeprazole treatment in a type 2 diabetic.

Calculated β cell mass increased by 67% by HOMA method. We believe this response is consistent with activation or neogenesis of pancreatic beta cells, possibly through a gastrin-mediated mechanism.

Hove et al¹⁴ conducted a case-control study to investigate whether treatment with esomeprazole improved HbA₁c levels in a group of type 2 diabetic patients. They found a border line significant reduction of HbA₁c by 0.7%.

A study was conducted by Michael A. Crouch, Ivan N. Mefford and Ekpedema U. Wade to investigate whether proton pump inhibitor therapy associated with lower glycosylated hemoglobin level in Type 2 Diabetes.² In that study 73 individuals were reviewed with type 2 diabetes (not taking insulin), for whom PPI were prescribed. Values for HbA₁c for periods of time when a PPI had been prescribed were compared with HbA1c levels for periods of time with no record of PPI prescribing or over-the-counter PPI use. The mean HbA1c or patients not taking insulin was 7.11 during periods with recorded prescribing or over-the-counter

use of PPI, compared with 7.70 during periods without recorded PPI therapy (P=0.001). Mean $HbA_{1}c$ for metformin monotherapy was not significantly different (6.81 with PPI vs. 7.10 without PPI; n=16; p=.25). Mean $HbA_{1}c$ was significantly different for combination therapy that included metformin and/or sulfonylurea and/or glitazone (7.26 vs. 7.80; n=27; p=.002).

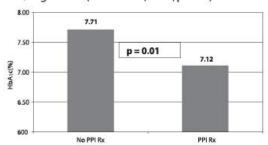


Fig.-III: Mean hemoglobin A_1c with and without an active proton pump inhibitor (PPI) prescription.

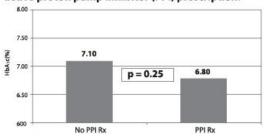


Fig.-IV: Mean hemoglobin A₁c with a prescription for metformin with and without a concomitant proton pump inhibitor (PPI).

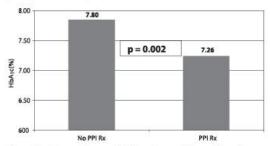


Fig. -V: Mean hemoglobin A₁c with sulfonylurea and/or glitazone and/or metformin with and without a prescription for a concomitant proton pump inhibitor (PPI).

Conclusion

PPIs have a secondary effect on glycemic control. It could be a new antidiabetic drug with a good profile: no

J. Dhaka National Med. Coll. Hos. 2022; 28 (01): 42-45 hypoglycemic events, good tolerability and safety, and with a limited price.

References:

- Mc Quaid KR. Drugs used in the treatment of gastrointestinal diseases. Basic & clinical pharmacology. Edited by Bertram G. Katzung, Susan B. Masters, Anthony J. Trevor. 12th edition, 2012: P. 1085.
- Michael A. Crouch, Ivan N. Mefford, and Ekpedeme U. Wade. Proton pump inhibitor therapy associated with lower glycosylated hemoglobin levels in type 2 diabetes. JABFM, January-February 2012, Vol. 25, no.1, PP.50-54.
- P.Marchetti, R. Lupi, S.Del Guerra et al. Goals of treatment for type 2 diabetes: β-cell preservation for glycemic control. Diabetic care, Vol.32, suppl. 2, PP. S178-S183, 2009.
- Sheen E, Triadafilopoulos G. Adverse effects of long-term proton pump inhibitor therapy. Dig Dis Sci 2011; 56: 931-950.
- Schubert ML. Gastrin secretion. Curr opin Gastroenterol 2010; 26: 598-603.
- Rooman I, Lardon J, Bouwens L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 2002; 51:686-690.
- Suarez-Pinzon WL, Yan Y, Power R, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin increases beta-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes 2005; 54: 2596-2601.
- 8) Suarez-Pinzon WL, Lakey JR, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet {beta}-cell from pancreatic duct cells and an increase in functional {beta}-cell mass. J Clin Endocrinol Metab 2005; 90: 3401-3409.
- Mefford IN. Wade EU. Proton pump inhibitors as a treatment method for type II diabetes. Med Hypotheses 2009 Jul; 73(1): 29-32.
 - 10) Michael R. Rickels and Dauiush Elahi. Raising Serum Gastrin to improve Glycemic Control in (Type
- Diabes: Another Limb of the enteroinsular axis? J Clin Endocrinol Metab, November 2012, 97(II): 3915-3916.

- 11) Bodvarsdottir TB, Hove KD, Gotfredsen CF, Pridal L, Vaag A, Karlsen AE, Petersen JS 2010. Treatment with a Proton pump inhibitor improves glycemic control in Psammomys obesus, a model of type 2 diabetes. Diabetologia 53: 2220-2223.
- Boj-Carceller D et al. Are proton pump inhibitors a new antidiabetic drug? Across sectional stydy. World J Diabetes 2011 December 15; 2(12): 217-220.
- Mefford IN, Mefford JT., and Burris CA. Improved Diabetes Control and Pancreatic Function in a Type 2 Diabetic after Omeprazole administration. Hindwi publishing Corporation. Case reports in endocrinology, Vol 2012, Article ID 468609.
- 14) Hove KD, Faerch K, Bodvarsdottir TB, Karlsen AE, Petersen JS, Vaag A. Treatment with a proton pump inhibitor improves glycemic control in type 2 diabetic patients – a retrospective analysis. Diabetes Res Clin Pract 2010; 90(3): e72-e74.