BONE MARROW TREPHINE BIOPSY IN HAEMATOLOGICAL DISEASES: A STUDY OF 53 CASES

KHATUN H¹, AFROSE S², KHAN MA³, ARA T⁴, ISLAM MS⁵, BISWAS AR⁶

Abstract:
Bone marrow aspiration (BMA) and biopsy (BMTB) are important investigations for diagnosis of haematological malignancies and non-malignant diseases both in adults and children. BMA and BMTB are complementary and if both are done a comprehensive analysis of bone marrow involvement is possible. 53 cases of BMTB were studied in order to underscore the indications and importance of BMTB. BMTB was done to determine cellularity in aplastic anaemia (AA) (33.96%, n=18) and in cases of failure of aspiration (32.08%, n=17). Failure of aspiration was attributable to bone marrow (BM) fibrosis (76%, n=13) due to acute leukaemia (35.30%, n=6) and myelofibrosis (43.17%, n=7). BMTB upstaged non Hodgkin’s lymphoma (NHL) from IIIB to IVB in 22.22% cases. 1 case of AA showed focal lymphoid aggregate which later evolved into acute lymphoblastic leukaemia (ALL). BMTB is a safe procedure and increased bleeding was noted only in a case of polycythaemia vera.

Key words: Bone marrow aspiration, bone marrow biopsy, aplastic anaemia, haematological malignancy.

Introduction:
Obtaining bone marrow, by aspiration and biopsy is critical for diagnosis, prognostic evaluation and response monitoring in Haematological malignancies¹,². BMTB is superior to assess cellularity, degree of fibrosis, marrow architecture and focal marrow infiltration in lymphoma. It can also provide sample for immunohistochemistry although not for cytogenetic study. Biopsy is also required when a ‘dry tap’ or ‘blood tap’ commonly associated with acute megakaryoblastic leukemia (AML- FAB-M7), acute panmyelosis with myelofibrosis and primary myelofibrosis (PMF)³,⁴. Abnormal localization of immature precursors (ALIP) in MDS and nodular partial remission (nPR) in chronic lymphocytic leukaemia (CLL) can be assessed only by BMTB⁵. BM aspirate along with trephine biopsy is required for diagnosis and staging of non-Hodgkin’s lymphoma (NHL) and Hodgkin’s lymphoma (HL)⁶,⁷.

Methods:
This study was done at the Department of Haematology, Dhaka Medical College Hospital, Dhaka from January to June 2013. The diagnosis of lymphoma was confirmed by lymph node biopsy and histopathology prior to staging bone marrow biopsy. Under informed consent, BMTB was done in posterior superior iliac spine under strict aseptic condition and local anaesthesia using Islam needle. Obtained core was preserved in formalin and touch imprints were prepared. Imprints were stained with Leishman stain and core was sent to a collaborating laboratory for histopathology.

1. Dr. Hazera Khatun, Specialist in Haematology, Square Hospital, Dhaka.
2. Dr. Salma Afrose, Associate Professor, Department of Haematology, Dhaka Medical College and Hospital, Dhaka.
3. Dr. Mohiuddin Ahmed Khan, Professor & Head, Department of Haematology, Dhaka Medical College and Hospital, Dhaka.
4. Dr. Tasneem Ara, Assistant Professor, Department of Haematology, Dhaka Medical College and Hospital, Dhaka.
5. Dr. Mohammad Sirajul Islam, Assistant Professor, Department of Haematology, Sir Salimullah Medical College and Mitford Hospital, Dhaka.
6. Dr. Akhil Ranjan Biswas, Assistant Professor, Department of Haematology, Dhaka Medical College and Hospital, Dhaka.

Correspondence: Dr. Hazera Khatun, Specialist in Haematology, Square Hospital, Dhaka. Cell Phone: +8801923745775, Email: drhazerak56@gmail.com
Results:
In a period of 6 month, BMTB was performed in 53 cases. Out of these 18 cases (34.61%) was AA. 4 cases each of ALL, lymphoma and PMF followed by acute myeloid leukaemia (AML) (n=3, 5.76%), chronic myeloid leukaemia (CML) and secondaries (n=2, 3.84%) [fig. 1]. 1 case each of multiple myeloma (MM) and polycythaemia rubra vera (PRV). 5 cases showed reactive changes and 6 cases showed normal active marrow. 2 cases showed erythroid hyperplasia (both done to stage lymphoma) and 1 case showed megakaryocytic hyperplasia (done to investigate thrombocytopenia). BMTB was done to assess the marrow cellularity in AA (n=18, 33.96%) which constitute an essential diagnostic criteria. In AA bone marrow was grossly hypocellular with increased fat spaces. Erythropoietic and granulopoietic elements were very scanty and megakaryocytes were virtually absent [fig. 3]. The second commonest indication was failure of bone

![Fig.-1: Findings in bone marrow biopsy](image1)

![Fig.-2: Biopsy findings in failed aspirations](image2)

![Fig.-3: Aplastic anaemia aspiration and biopsy feature: spirate shows hypocellular marrow with increased fat spaces and one megakaryocyte; A (×10 objective); B (×10 objective); C (×40 objective); D (×100 objective). Biopsy shows grossly hypocellular marrow with increased fat spaces and no megakaryocytes. [A - Leishman stain; B, C and D – H & E stain)](image3)
marrow aspiration (n=17, 32.08%) followed by staging of lymphoma (n=12, 22.64%). Out of 17 cases of failed aspiration, 65% was blood tap (yielding only blood in aspiration; n=11) and 35% was dry tap (yielding no blood or marrow particles in aspiration; n=6). Out of the 17 failed aspiration cases, 41% (n=7) was due to MPN namely PMF (23%), PRV (6%) and CML (12%). Other causes of failed aspirations were Multiple myeloma (6%), ALL (17%), AML (18%) and secondary deposits in the bone marrow (6%) [fig. 2]. Marrow in PMF was grossly hypocellular with widening of bony trabeculae, marked depression of cellular elements, gross fibrosis and increase in reticulin fibres [fig. 4]. In the early phase of PMF bony tissue showed mild degree of proliferation of reticulin fibres. Cellular elements were relatively reduced and few megakaryocytes were seen [fig. 5]. Imprint in both cases were acellular. The commonest complication of BMTB was mild haemorrhage. Increased bleeding was observed in a case of polycythaemia vera.

Fig.-4: Fibrotic phase PMF: (A) Massive widening of bony trabeculae and hypocellularity, (B) Streamlining of megakaryocytes. Abnormal megakaryocyte with cloud like nuclei (×10 objective) [H & E stain].

Fig.-5: PMF features in blood and marrow: (A) peripheral blood shows dacryocytes (arrow head marked) and myeloblast (oil immersion objective); (B) trephine biopsy shows large megakaryocytes with bulbous deeply lobated nuclei. (×40 objective); (C & D) marked reticulin fibrosis in marrow (× 40 and ×10 objective respectively) [A - Leishman stain; B - H & E stain; C and D - Silver impregnation stain].
Discussion:
BMTB is a relatively safe procedure with adverse event reported in only .12 to .34% of procedures. Major risk factor for haemorrhage was MPD and we found increased bleeding in a case of polycythaemia vera. Aspiration failure was found attributable to fibrosis in 58.8% cases (n=10). Cases included ALL, AML and PMF. PMF comprised 23.5% of the cases which is similar to another study by Barua et al. This was higher than found by Humphries. Similar to other studies, Barua et al., malempati et al., found that 10% of the cases (n=2) BM biopsy showed lymphomatous infiltration which is higher than the study by Brunning & McKenna, probably due to larger sample size. Both the cases in current study were at clinical stage IIIB upstaged to IVB after biopsy.

Conclusion:
This was a small study of 53 cases. We strongly believe that extending this study can produce valuable results. The necessity of BMTB in NHL particularly merits further evaluation with higher number of patients. However, in resource-poor setting as ours, performing BMTB in strict indications can limit diagnostic failure in patients.

References: