

Antibiotic Resistance Profile of Uropathogenic Bacteria in a Tertiary Care Hospital, Chattogram, Bangladesh: A Focus on Multidrug-Resistant Strains

Muhammad Omar Faruq^{1*} Taslima Newaz² Mohammad Mezanoor Rashid Alamder³
Sandipawn Rudra¹ Omar Faruq⁴ Anupam Das⁴ Aka Sarkar⁵

Abstract

Background: In Bangladesh, Urinary Tract Infection (UTI) is the most common bacterial infection, and misuse of antibiotics is causing Antimicrobial Resistance (AMR) rapidly increasing. The purpose of this study is to identify the antibiotic resistance pattern of bacterial uropathogens in patients with multidrug resistance rates at a tertiary hospital in Chandanish Upazilla, Chattogram.

Materials and methods: An institution-based cross-sectional study was done in the clinical laboratory for the diagnosis of patients attending BGC Trust Medical College and Hospital. The data of urine samples and their antibiotic sensitivity patterns were obtained from the laboratory register book. Secondary data were collected and entered into the SPSS version 22 computer software package for univariate and bivariate analysis.

Results: Out of 891 registered patient data sets, 886 results were taken and investigated. About 27% (239) people had a urinary tract infection, and the maximum count of the isolates, 81.6% (195) were from females. The highest prevalence was obtained among the age groups of 19–30 years (36.8%). Escherichia coli was the most prevalent organism, 64.9% (155). All the isolates showed the maximum resistance to cefuroxime and cefradine, ranging from 85-100%. The antibiotic resistant rate and multi-drug resistant rate were 97.9% and 65.81%, respectively. E. coli showed the highest drug resistance and multi-drug resistance 65.9% and 64.3%.

Conclusion: The study highlights a high prevalence of antibiotic resistance and multidrug resistance in bacterial

uropathogens, notably Escherichia coli. Resistance to critical antibiotics like cefuroxime and cefradine underscores the need for enhanced antibiotic stewardship and control measures to combat Antimicrobial Resistance (AMR).

Key word: Antibiotic resistance; Bacteria; Multi drug resistance; Patient; UTI.

Introduction

Urinary Tract Infection (UTI) is one of the most common bacterial infections seen in medical practice, particularly in developing countries with a high rate of morbidity and financial expense.^{1,2} Every year, about 150 million new cases are diagnosed resulting in 6 billion USD in health care cost.³ Bacterial cystitis is the most common infectious disease in women. Every woman has a 60% lifetime experience with bacterial cystitis, which develops mostly before the age of 24.⁴ The main primary organisms of UTI are Gram-negative bacteria like Escherichia coli (E. coli) Klebsiella, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter and Serratia and Gram-positive bacteria like Enterococcus and Staphylococcus, with Escherichia coli being the most common pathogen in both community and hospital settings, which is responsible for more than 80% of cases.^{5,1}

Increasing Antimicrobial Resistant (AMR) bacteria represent a growing threat to public health. Multidrug-Resistant (MDR) bacteria, which are gaining attention, are defined as having acquired non-susceptibility to at least one agent across three or more antimicrobial categories.⁶ A surveillance study in 42 Eastern European centers revealed an increase in antibiotic resistance among E. coli isolates, with Turkey having the highest proportion of ESBL (Extended Spectrum Beta-Lactamase)-positive bacteria, followed by Russia, Switzerland, Croatia and Bosnia and Herzegovina.⁷ Research from several parts of India has demonstrated that E. Coli has the highest rates of antimicrobial resistance. The study also reported that the resistance rates of uropathogenic

- 1.□Lecturer of Community Medicine and Public Health
□ BGC Trust Medical College, Chattogram.
- 2.□Assistant Professor of Community Medicine and Public Health
□ BGC Trust Medical College, Chattogram.
- 3.□Assistant Professor of Anaesthesia
□ BGC Trust Medical College, Chattogram.
- 4.□Lecturer of Microbiology
□ BGC Trust Medical College, Chattogram.
- 5.□Medical Officer
□ Chattogram Max Hospital, Chattogram.

***Correspondence:** Dr. Muhammad Omar Faruq
□ Cell : 01815 66 33 24
□ E-mail: faruqbgctmc@gmail.com

Submitted on □ 30.03.2025

Accepted on □ : 07.12.2025

E. coli to various antibiotics were beta-lactams (57.4%) co-trimoxazole (48.5%) quinolones (74.5%) gentamicin (58.2%) amikacin (33.4%) cefuroxime (56%) and nalidixic acid (77.7%).⁸

Less than a century after Sir Alexander Fleming discovered *Penicillium notatum*, the increasing Antimicrobial Resistance (AMR) of most clinically important bacteria to antimicrobial drugs is a serious public health problem. AMR has spread all over the world, devastating all regions of the globe, including Europe, the Americas, Africa and Australasia.⁹ In the United States, every year more than 2.8 million people contract an antibiotic-resistant infection, leading to more than 35,000 deaths, the similar statistic for Europe is 33,000 per year.¹ About 700,000 deaths are reported annually due to Antimicrobial Resistance (AMR).¹⁰ According to the report of WHO, it is state that, the multidrug resistance accounts for about 45% of mortality in both South Asia and Africa.¹¹ By 2050, drug-resistant infections may cause 10 million deaths per year, with Asia and Africa accounting for almost 90% of these fatalities.¹²

In Bangladesh, antibiotic prescribing rates are increasing due to physicians prescribing antibiotics empirically before laboratory results are available, leading to increased misuse of antibiotics.¹ This issue is particularly prevalent in rural areas, where excess prescribing and improper prescribing are common due to unethical practices by health professionals and drug manufacturers.¹³ Due to the high prevalence of infectious illness morbidity and mortality, the absence of comprehensive research on antibiotic resistance patterns in Bangladesh often leads to the prescription of several antibiotics, including broad-spectrum antibiotics.¹⁴ This study aimed to identify the bacteria causing UTI and determine the resistance profile of multidrug-resistant isolates using Antimicrobial Susceptibility Test (AST) data recorded in the laboratory register book of the microbiology department at BGC Trust Medical College.

Materials and methods

This was a cross-sectional study conducted in the Department of Microbiology, BGC Trust Medical College and Hospital, BGC Bidyanagar, Chandanaish, Chattogram. The data was obtained

from the laboratory register book, which contains all the recorded reports. All the AST reports of patients attending the hospital from the period of January 2019 to January 2022 with suspected Urinary Tract Infections (UTIs) were included. Patients with incomplete data or reports of non-urinary tract infections were excluded. The sample size was not calculated, a total of 886 samples were analyzed from the record book.

Data collected for each patient included registration number, age, sex, urine culture results, identification of the bacterial strain causing UTI and corresponding Antimicrobial Susceptibility Test (AST) findings. Since this was secondary data, Institutional Review Board approval was not necessary, but written permission was obtained from the Principal and Head of the Department of Microbiology at BGC Trust Medical College Hospital. The culture data were analyzed using conventional standards, and a bacteruria growth of 10^5 colony forming units/ml was considered significant.¹⁵ The Rapid, Modified Kirby-Bauer Susceptibility Test with Single, High-Concentration technique was used to test antibiotic susceptibility and interpretations were produced for each bacterial isolate using interpretative criteria suggested by the National Committee for Clinical Laboratory Standards.^{16,17} Data variables included basic demographics (Age, gender) infectious agents identified, and individual sensitivity to 14 antimicrobials (Amoxicillin-clavulanic acid, Amikacin, Azithromycin, Cefuroxime, Ceftriaxone, Cefradin, Ciprofloxacin, Cotrimoxazole, Meropenem, Gentamycin, Nitrofurantoin, Piperacillin-tazobactam, Penicillin) used for the treatment. But we used all of those isolates where we found coliform bacteria. Gentamycin was used in the sample that found *E. coli*, Coliform bacteria, and *Klebsiella*. Meropenem was used in samples that found *E. coli* and Coliform bacteria. Colistin, Piperacillin-tazobactam and Penicillin were not used in the samples that found *E. coli*, *Klebsiella*, *Pseudomonas* and *Acinetobacter*. Data is password protected and secured by the organization policy. Only the authorized person can access it. Then data was coded in the software IBM SPSS Statistics V. 22.0.

IBM SPSS Statistics V. 22.0 was used for univariate and bivariate analysis of the data. To summarize patient characteristics and other pertinent information, descriptive statistics such as frequency, percentage, mean, and standard deviation were used. The Chi-Square test was performed to examine the distribution of antibiotic resistance and MDR among different age and sexgroups and antibiotic sensitivities of uropathogens.

Results

Over the three-year period, we got 886 urine samples in total for culture and sensitivity test. The sex distribution was that females contributed 78.9% (699) and males were 21.1% (187). The largest age group in this study was 19–30 years old 371 (41.9%). The highest bacterial growth found in the age group 19–30 years was about 36.8% (88). Growth of bacteria in culture was highly prevalent in females, at 81.6% (195) (Table I).

Table I Demographic characteristics associated with UTI (n=886)

	Frequency (%) (n=239)	Positive % (n=647)	Negative %
Age group			
0-18	161 (18.17)	17.6 (42)	18.4 (119)
19-30	371 (41.88)	36.8 (88)	43.7 (283)
31-40	150 (16.93)	16.7 (40)	17 (110)
41-50	72 (8.13)	9.2 (22)	7.7 (50)
51-60	61 (6.88)	7.9 (19)	6.5 (42)
more than 60	71 (8.01)	11.71 (28)	6.6 (43)
Gender			
Male	187 (21.11)	18.4 (44)	22.1 (143)
Female	699 (78.89)	81.6 (195)	77.9 (504)

The isolated uropathogens were *E. coli* 64.9% (155) Coliform bacteria 31% (74) *Klebsiella* 2.9% (7) *Pseudomonas* 2 (0.8%) and *Acinetobacter* 0.4% (1). In the age group, *E. coli* was also highly prevalent in all age groups except 51–60 years, where coliform bacteria were prevalent. All the organisms were highly prevalent in females. *E. coli* was the highest percentage, both male and female, at 64.6% (126) and 65.9% (29). From the isolated bacteria, *E. coli* showed the highest antibiotic resistance (64.5%). The frequency of MDR isolates of *E. coli* was (64.3%) Coliform bacteria (32.5%) *Klebsiella* (1.9%) *Pseudomonas* (0.6%) and *Acinetobacter* (0.6%) (Table II).

Table II Percentage frequency of bacterial isolation from culture in different age and sex group and showing drug resistance and multi drug resistance

Bacteria Isolated from culture	Coliform bacteria % (n)	<i>E. Coli</i> % (n)	<i>Klebsiella</i> % (n)	<i>Pseudomonas</i> % (n)	<i>Acinetobacter</i> % (n)
% (n)	31 (74)	64.9 (155)	2.9 (7)	0.8 (2)	0.4 (1)
Age Group					
0-18	28.6 (12)	71.4 (30)	0 (0)	0 (0)	0 (0)
19-30	28.4 (25)	63.6 (56)	6.8 (6)	0 (0)	1.1 (1)
31-40	42.5 (17)	57.5 (23)	0 (0)	0 (0)	0 (0)
41-50	22.7 (5)	68.2 (15)	0 (0)	9.1 (2)	0 (0)
51-60	52.6 (10)	42.1 (8)	5.3 (1)	0 (0)	0 (0)
more than 60	17.9 (5)	82.1 (23)	0 (0)	0 (0)	0 (0)
Gender					
Male	31.8 (14)	65.9 (29)	0 (0)	2.3 (1)	0 (0)
Female	30.8 (60)	64.6 (126)	3.6 (7)	0.5 (1)	0.5 (1)
Drug Resistance (n=234)	31.6 (74)	64.5 (151)	2.6 (6)	0.9 (2)	0.4 (1)
Multi Drug Resistance (n=154)	32.5 (50)	64.3 (99)	1.9 (3)	0.6 (1)	0.6 (1)

Table III shows, the majority of the uropathogens that were isolated showed resistance to at least one of the tested antibiotics. Overall, antibiotic resistance rate was highest for cefuroxime (96.7%) followed by amoxicillin and clavulanic acid (47.7%). On the other hand, amikacin was found to be the most sensitive (79.9%) followed by ciprofloxacin (68.2%) nitrofurantoin (67.8%) cotrimoxazole (47.7%) and ceftriaxone (43.9%).

Table III Percentage frequency of antibiotic susceptibility test

AST	Sensitive %		Intermediate	Resistance	Not done
	Sensitive %	%			%
Amoxicillin + Clavulanic acid	37.2		12.1	47.7	2.9
Amikacin	79.9		5.9	3.3	10.9
Azithromycin	32.6		32.6	34.7	0
Cefuroxime (2nd Gen.)	0.4		2.5	96.7	0.4
Ceftriaxone (3rd Gen.)	43.9		14.2	38.5	3.3
Cephadrine	0.8		0.4	47.3	51.5
Ciprofloxacin	68.2		7.9	20.5	3.3
Cotrimoxazole	47.7		12.1	40.2	0
Gentamycin	13.8		6.3	1.3	78.7
Meropenem	3.8		0	7.9	88.3
Nitrofurantoin	67.8		23	8.8	0.4
Colistin	1.3		0.4	0	98.3
Piperacillin + Tazobactam	0		0	0.4	99.6
Penicillin	0		0	0.4	99.6

A total of 239 samples showed 234 (97.9%) drug resistance, with the highest antibiotic resistance in the 19-30-year age group (36.3%) and females (81.2%) being most affected. Out of 234 drug resistance isolates, 154 (65.81%) were multidrug resistant, with the highest age group 33.38% being 19-30 years and MDR isolates were more common among females (79.9%) (Table IV).

Table IV Percentage frequency of drug resistance and multi drug resistance different age and sex group

Age Group	Drug Resistance (n=234)		Multi Drug Resistance (n=154)	
	Yes % (n)	No % (n)	Yes % (n)	No % (n)
0-18	17.9 (42)	0 (0)	18.2 (28)	17.5 (14)
19-30	36.3 (85)	60 (3)	33.8 (52)	41.25 (33)
31-40	17.1 (40)	0 (0)	17.5 (27)	16.25 (13)
41-50	9 (21)	20 (1)	9.7 (15)	7.5 (6)
51-60	8.1 (19)	0 (0)	8.4 (13)	7.5 (6)
more than 60	11.6 (27)	20 (1)	12.3 (19)	10 (8)
Gender				
Male	18.8 (44)	0 (0)	20.1 (31)	16.25 (13)
Female	81.2 (190)	100 (5)	79.9 (123)	83.75 (67)

In the examination of associated risk factors, there was no significant relationship between antibiotic resistance and age group ($p = 0.571$) or sex group ($p = 0.283$). The age ($p = 0.881$) and sex ($p = 0.356$) groups were also not significant in relation to multidrug resistance (Table 05).

From Table VI, the antimicrobial resistance pattern of uropathogens, *Escherichia coli* exhibited a very high frequency of resistance to cefuroxime 96.10%, cefradine 95.50% low resistance to gentamycin 7.3%, amikacin 3%, low resistance to nitrofurantoin 1.3%.

Table V Demographic characteristics associated with drug resistance and multidrug resistance of samples undergoing urine AST

Age group	Drug resistance		p-Value		Multi Drug resistance		p-Value	
	Yes %	No %			Yes %	No %		
0-18	100%	0%			66.7%	33.3%		
19-30	96.6%	3.4%			61.18%	38.82%		
31-40	100%	0%			67.5%	32.5%		
41-50	95.5%	4.5%			71.42%	28.58%		
51-60	100%	0%			68.42%	31.58%		
more than 60	96.4%	3.6%			70.37%	29.63%		
Gender			0.571				0.881	
Male	100%	0%			70.5%	29.5%		
Female	97.4%	2.6%			64.73%	35.27%		
0.283								

Coliform bacteria showed antibiotic resistance highly to cefuroxime, cefradine, piperacillin and tazobactam and penicillin 100%, followed by meropenem 88.90% low resistance to ciprofloxacin 9.9%, amikacin 4.3% and no resistance to gentamycin and colistin. *Klebsiella* was 100% resistant to cefradine and followed by cefuroxime 85.7% low resistance to amikacin 14.3% and no resistance to nitrofurantoin,

gentamycin. *Pseudomonas* was 100% resistant to cefuroxime, cefradine. *Acinetobacter* was 100% resistant to amoxicillin and clavulanic acid, cefuroxime, ceftriaxone, cefradine and cotrimoxazole (Table VI).

Table VI Antibiotic resistance pattern of different bacteria isolated from urine culture

Antibiotic	Coliform	E. Coli	Klebsiella	Pseudomonas	Acinetobacter
	bacteria %	%	%	%	%
Amoxicillin+					
Clavulanic acid	41.7	54	28.6	0	100
Amikacin	4.3	3	14.3	0	0
Azithromycin	28.4	37.4	42.9	50	0
Cefuroxime (2nd Gen.)	100	96.1	85.7	100	100
Ceftriaxone (3rd Gen.)	35.1	43.2	16.7	0	100
Cefradine	100	95.5	100	100	100
Ciprofloxacin	9.9	26.7	28.6	0	0
Cotrimoxazole	37.8	40.6	42.9	50	100
Gentamycin	0	7.3	0	0	0
Meropenem	88.9	57.9	0	0	0
Nitrofurantoin	24.3	1.3	0	50	0
Colistin	0	0	0	0	0
Piperacillin +					
Tazobactam	100	0	0	0	0
Penicillin	100	0	0	0	0

Discussion

In the current investigation, urine samples were cultured to see growth of uropathogens, and about 239 (27%) of the urine had notable growth of bacteria. The findings of this research are consistent with those of Tuem et al. who found 28.5%.¹⁸ The prevalence was lower than in other studies 48.6% in Bangladesh, 32% in Ethiopia.^{19,20} Previous antibiotic therapy and clinical diseases like non-gonococcal urethritis can cause low bacteriuria or no growth in urine samples, emphasizing the need to inform patients about clean catch mid-stream urine specimens.¹⁹ The prevalence of this study was higher than other study, 15.8% in Nepal.²¹

In our study, UTI is more prevalent in females (81.6%) than males (18.4%) which is consistent with findings from previous studies in Bangladesh and Portugal.^{1,2} According to the study, female proximity to the anus, shorter urethra, sexual intercourse, incontinence and poor toilet habits are all contributing factor to the high prevalence of UTI in females.¹ Poor hygiene, particularly in menstrual age, is another contributing factor.²² Another study by Linhares et al. found that the

elderly is the most affected by UTI, which contradicts the current study's findings.² Conversely, men under 50 tend to have lower UTI rates, attributed to antibacterial properties of the prostate, though moderate multidrug-resistant rates in young males (63.63%) suggest a demographic less frequently treated with antibiotics for UTIs.⁴

Our study identified *E. coli* as the predominant strain causing Urinary Tract Infections (UTIs) with a prevalence of 64.9%. A similar study reported an even higher prevalence of *E. coli* at 85.16%.²³ Resistance patterns revealed that *Acinetobacter* exhibited 100% resistance to amoxicillin-clavulanic acid, ceftriaxone and cotrimoxazole, while *E. coli*, *Coliforms* and *Klebsiella* also showed significant resistance (54%, 41.7% and 28.6%, respectively) to amoxicillin-clavulanic acid. *Pseudomonas* spp. is particularly noted for causing hospital-acquired UTIs and is often resistant to traditional antimicrobials.⁵

The investigation revealed that uropathogens such as *E. coli*, *Coliform* bacteria, *Klebsiella*, *Pseudomonas*, and *Acinetobacter* showed high resistance (85-100%) to cefuroxime and cefradin, aligning with findings from Bangladesh.²⁴ Ceftriaxone exhibited low resistance to *Klebsiella* and none to *Pseudomonas*, with other bacteria showing resistance rates from 35-100%. The shift in ceftriaxone effectiveness is attributed to horizontal gene transfer leading to increased antibiotic resistance.²⁵ Additionally, resistance to piperacillin-tazobactam was noted among coliform bacteria, consistent with findings from Iraq.²⁶ Meropenem demonstrated resistance rates of 88.9% in coliform bacteria and 57.9% in *E. coli*, which contradicts a study from India that reported high sensitivity to this antibiotic.²⁷

Ciprofloxacin showed resistance rates of 26.7% to *E. coli* and 28.6% to *Klebsiella*, but was 100% sensitive to *Pseudomonas* and highly sensitive to coliform bacteria. Its efficacy has diminished due to improper use, impacting treatment for UTIs and other infections.²⁴ Nitrofurantoin exhibited 50% resistance in *Pseudomonas* and 24.3% in coliforms, with highly sensitive against *E. coli* and *Klebsiella*. A study in Chittagong indicated high resistance of *E. coli* to third-generation

antibiotics, with Nitrofurantoin showing only 10% resistance.¹⁰ This medicine has been the first-line therapy for uncomplicated UTIs in adults for more than two decades, since its introduction in 1974.²⁷ In the study, 98% of samples exhibited resistance to at least one antibiotic, with 65.81% identified as Multidrug-Resistant (MDR) raising significant concerns. Previous reports by Asaduzzaman et al. and Begum et al. indicated MDR rates of 54.2% and 70.67%, respectively.⁶ *E. coli* showed both the highest drug resistance and MDR, the rates were 64.5% and 64.3%, respectively. There is a theory that the *Escherichia coli* caused infections get aggregated and are difficult to eradicate due to the formation of "biofilms".²⁸ Biofilms can be defined as a group of microbial colonies that are attached to a biotic or abiotic surface by producing an extra-polymeric matrix of their own or from the host's components.³ Biofilm makes it harder for conventional antibiotics to penetrate the cells and makes the cells less responsive to antibiotics.²⁹

Limitation

The study is limited by a lack of clinical data to ascertain the origin of infections (hospital or community-acquired) and their complexity (complicated or uncomplicated). It does not assess risk factors associated with multidrug resistance. Utilizing a secondary dataset from a single institution restricts data collection to patients attending the diagnostic center, impacting the study's population representation. Furthermore, it does not monitor patient health trends, outcomes, or diagnostic testing.

Conclusion

This study demonstrates a high frequency of antimicrobial and multidrug resistance among uropathogens, with *E. coli* showing the highest resistance rates. Commonly prescribed oral antibioticssuch as cefuroxime, cefradine, amoxicillin-clavulanic acid, azithromycin and cotrimoxazole showed very poor effectiveness and are unsuitable for empirical therapy in this setting. Ciprofloxacin and nitrofurantoin showed considerable resistance but preserved some action, suggesting diminished dependability. The most effective agents were the parenteral drugs amikacin and gentamicin, presenting a critical

treatment gap due to the lack of potent oral antibiotics for empiric use. Further research, including genomic sequence of resistant strains, is needed to identify resistance mechanisms and guide improved antibiotic stewardship and treatment policies.

Recommendation

Awareness programs regarding safety guidelines and appropriate use of antibiotic should be put into action.

Acknowledgement

The authors gratefully acknowledge the contribution of Principal, BGC Trust Medical College Hospital, Chattogram and Professor and HOD, Department of Microbiology, BGC Trust Medical College, Chattogram.

Contribution of authors

MOF-Conception, acquisition of data, data analysis, drafting & final approval.

TN- Conception, design, critical revision & final approval.

MMRA-Conception, design, critical revision & final approval.

SR- Acquisition of data, data analysis, interpretation of data, drafting & final approval.

OF-Design, acquisition of data, interpretation of data, drafting & final approval.

AD-Acquisition of data, data analysis, drafting & final approval.

AS-Acquisition of data, data analysis, drafting & final approval.

Disclosure

All the authors declared no competing interests.

References

1. Nahar A, Hasnat S, Akter H, Begum N. Evaluation of antimicrobial resistance pattern of uropathogens in a tertiary care hospital in Dhaka city , Bangladesh. 2017;7(2):12-18.
2. Linhares I, Raposo T, Rodrigues A, Almeida A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: A ten-year surveillance study (2000-2009). *BMC Infect Dis.* 2013;13(1). doi:10.1186/1471-2334-13-19.
3. Majumdar S, Mina SA, Akter Y, Marzan LW. Drug-resistant, biofilm-producing uropathogens isolated and characterized from urinary tract infected patients in Chattogram, Bangladesh. *Bioresearch Commun.* 2022;8(2):1106-1114. doi:10.3329/brc. v8i2.60641.
4. Alam MF, Abony M, Sikdar MSS, Adnan H, Akhter D, Fatema K et al. Comparative antibiogram of *Escherichia coli* isolated from urinary tract infection in patients of different age and sex groups in Chittagong, Bangladesh. *J Primeasia Univ.* 2019;1(2):1-6.
5. Majumder MMI, Mahadi AR, Ahmed T, Ahmed M, Uddin MN, Alam MZ. Antibiotic resistance pattern of microorganisms causing urinary tract infection: A 10-year comparative analysis in a tertiary care hospital of Bangladesh. *Antimicrobial Resistance & Infection Control.* 2022; 11:156. doi:10.1186/s13756-022-01197-6.
6. Khatun F, Kumar N, Khushboo, Abony M, Datta S. Isolation and identification of multi-drug resistant (MDR) pathogens from patients with urinary tract infection (UTI) in Dhaka City, Bangladesh. *J Pure Appl Microbiol.* 2022;16(3):2028-2034. doi:10.22207/JPAM.16.3.55.
7. Allocati N, Masulli M, Alexeyev MF, Di Ilio C. *Escherichia coli* in Europe: An overview. *Int J Environ Res Public Health.* 2013;10(12):6235-6254.
8. Niranjan V, Malini A. Antimicrobial resistance pattern in *Escherichia coli* causing urinary tract infection among inpatients. 2014;:945-948.
9. Hrbacek J, Cermak P, Zachoval R. Current Antibiotic Resistance Trends of Uropathogens in Central Europe : Survey from a Tertiary Hospital Urology Department 2011 – 2019. 2020.
10. Akther S, Khan AA, Khanam S, Kasthagir T, Hossen FFB. Bacteriological profile and antibiotic susceptibility pattern of uropathogens causing urinary tract infection: A cross-sectional study from a tertiary care hospital, Chattogram, Bangladesh. *Marine City Med Coll J.* 2023;2(1):12-18.
11. Rahman MR, Islam F, Rahman MA, Bashar SB, Rifat RH, Saha BC et al. Antibiotic resistance situation in Dhaka, Bangladesh : A review. 2021;10(5):584-590.
12. Safain KS, Bhuyan GS, Tasnim S, Hasib SH. Situation of antibiotic resistance in Bangladesh and its association with resistance genes for horizontal transfer. *bioRxiv.* 2020;
13. Sayeed MA, Iqbal N, Ali S, Rahman M, Islam R. Survey on Antibiotic Practices in Chittagong City of Bangladesh. 2015;18(2):174-178.

14. Jain P, Bepari AK, Sen PK, Rafe T, Imtiaz R, Hossain M et al. High prevalence of multiple antibiotic resistance in clinical *E. coli* isolates from Bangladesh and prediction of molecular resistance determinants using WGS of an XDR isolate. *Sci Rep* [Internet]. 2021;11(1):1–13. <https://doi.org/10.1038/s41598-021-02251-w>.

15. Collee JG, Duguid JP, Fraser AG, Marmion BP. *Ma. In: Mackie & McCartney Practical Medical Microbiology*. Vol 2. 13th ed. New York: Churchill Livingstone. 1989; 456–481.

16. Boyle VJ, Fancher ME, Ross RW. Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks. *Antimicrob Agents Chemother*. 1973;3(3):418–424. doi:10.1128/AAC.3.3.418.

17. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard -Eleventh Edition. 2012;32.

18. Tuem KB, Desta R, Bitew H, Ibrahim S, Hishe HZ. Antimicrobial resistance patterns of uropathogens isolated between 2012 and 2017 from a tertiary hospital in Northern Ethiopia. *J Glob Antimicrob Resist* [Internet]. 2019;18:109–114. <https://doi.org/10.1016/j.jgar.2019.01.022>

19. Mazed MA, Hussain A, Akter N, Sultan T, Dewanje AK. Pattern of Bacteria Causing Urinary Tract Infections and Their Antibiotic Susceptibility Profile at Chittagong Medical College Hospital. 2008;02(02):17–21.

20. Addis T, Mekonnen Y, Ayenew Z, Fentaw S, Biazin H. Bacterial uropathogens and burden of antimicrobial resistance pattern in urine specimens referred to Ethiopian Public Health Institute. 2021;429:1–14. <http://dx.doi.org/10.1371/journal.pone.0259602>

21. Baral R, Shrestha B, Poudel P, Acharya A, Gautam R, Basnyat SR, et al. Low yield but high levels of multidrug resistance in urinary tract infections in a tertiary hospital, Nepal. *Public Health Action*. 2021;11(1):70–76. doi:10.5588/pha.21.0044.

22. Das P, Baker KK, Dutta A, Swain T, Sahoo S, Das BS, et al. Menstrual hygiene practices, WASH access and the risk of urogenital infection in women from Odisha, India. *PLoS One*. 2015;10(6):1–16.

23. Yasmeen BN, Islam S, Islam S, Uddin MM, Jahan R. Prevalence of urinary tract infection, its causative agents and antibiotic sensitivity pattern : A study in Northern International Medical College Hospital, Dhaka. *North Int Med Coll J*. 2015;7(1):105–109.

24. Haque R, Akter ML, Salam MA. Prevalence and susceptibility of uropathogens: A recent report from a teaching hospital in Bangladesh. *BMC Res Notes*. 2015;8(1):1–5.

25. Alam J, Mousumi SJ, Rana R, Akter MS, Juliana FM, Johirul M, et al. Ceftriaxone Resistance Patterns of Uropathogens Isolated From Urinary Tract Infection Patients in Selected Areas of Dhaka City, Bangladesh Ceftriaxone Resistance Patterns of Uropathogens Isolated From Urinary Tract Infection Patients in Selected Areas of Dhaka City, Bangladesh. 2017.

26. Saad Luty R, Ghlib Fadil A, Najm JM, Abduljabbar HH, Abdul S, Kashmar A. La susceptibilidad a los antibióticos de los uropatógenos como indicador de la terapia empírica utilizada para las infecciones del tracto urinario. 2020;12(5):395–403. <http://ijm.tums.ac.ir>.

27. Lee ACC, Mullany LC, Koffi AK, Rafiqullah I, Khanam R, Folger L V et al. Urinary tract infections in pregnancy in a rural population of Bangladesh: Population-based prevalence, risk factors, etiology, and antibiotic resistance. *BMC Pregnancy Childbirth*. 2019;20(1):1–11.

28. Danese PN, Pratt LA. Exopolysaccharide Production Is Required for Development of. *Society*. 2000;182(12): 3593–3596.

29. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S et al. *Escherichia coli* biofilm: Development and therapeutic strategies. *J Appl Microbiol*. 2016;121(2):309–319.