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 Abstract 
 Plant-wide oscillations are common in many processes. Their effects propagate to many units and may 
impact the overall process performance. It is important to detect and diagnose the cause of such 
oscillations in order to rectify the situation and maintain the proper profitability of the plant. This paper 
proposes a new procedure to detect and diagnose plant-wide oscillations using routine operating data. The 
method has been developed based on the nonlinearity information in the process data. A new Total 
Nonlinearity Index (TNLI) has been defined to quantify nonlinearities. The method is based on the 
assumption that the nonlinearity is highest near the source and decreases as one moves away from the 
source. This assumption is true because chemical processes have the nature of low-pass filters and they 
filter out gradually higher order harmonics of the signals. Signals with higher order harmonics are 
generally more nonlinear. The proposed diagnostic method has already been successfully applied for 
troubleshooting many industrial plant-wide oscillation problems. Two of such case studies have been 
presented in this paper. 
 

 
1 Introduction 
 
Oscillations are a common form of plant-wide 
disturbance. The presence of oscillations in control 
loops increases the variability of the process variables 
thus causing inferior quality products, larger rejection 
rates, increased energy consumption and reduced 
average throughput. The high level of energy 
integration in most modern plants facilitates the 
propagation of oscillations from one process unit to 
another. It is important to detect and diagnose the 
causes of oscillations in a chemical process because a 
plant running close to product quality limits or 
operating constraints is more profitable than a plant 
that has to back away due to the amplitude of the 
oscillations (Martin et al., 1991; Shunta, 1995). In this 
paper, we present a new method for the detection and 
diagnosis of plant-wide oscillations and demonstrate 
its efficacy through an application to a chemical 
process at Eastman Chemical Company, USA. 
 
In a control loop, oscillations may arise for various 
reasons including poorly tuned controllers, presence of 
oscillatory disturbances and nonlinearities. Bialkowski 
(1992) reported that about 30% of the loops are 
oscillatory due to control valve problems. In a recent 
industrial survey, Desborough and Miller (2002) found 
that control valve problems account for about a third of 
the 32% of controllers classified as “poor” or “fair”. 
The method presented here is quite general for finding 
the root cause of oscillations due to nonlinearities, 
which is known to be the key reason for oscillations in 
process industries (Bialkowski, 1992; Desborough and 

Miller, 2002). The attraction of this method is that it 
primarily uses only regular operating data. No 
additional experimentation of the plant is required. The 
main contributions of this paper are: 
(1) Methods for automatic detection of multiple 
oscillations across an entire plant site. 
(2) Development of new indices based on higher order 
statistics for diagnosing root cause of plant-wide 
oscillations. 
(3) Demonstration of the potential of systematic use of 
signal processing techniques for solving industrial 
problems through case studies. 
 
2 What is Plantwide Oscillation(s) 
 
When one or more oscillations is generated somewhere 
in the plant and propagates throughout a whole plant or 
some units of the plant, such oscillations are termed as 
plantwide or unitwide oscillation. Oscillation may 
propagate through many units of the process plants 
because of the tight heat and mass integration in the 
plant as well as the presence of recycle streams in the 
plant. Figure 1 shows an example of a plant-wide 
oscillation problem. The left panel shows the time 
trends of 37 variables representing a plant-wide 
oscillation problem in a refinery (courtesy of South-
East Asia Refinery). The right panel shows the power 
spectrum of these variables. This clearly shows the 
presence of an oscillation with a frequency of 0.06 or 
approximately 17 samples/cycle in many of these 
variables. The presence of such plant-wide 
oscillation(s) take a huge toll on the plant economy. 
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Fig 1: Time trends and their power Spectra 

 
3 Detection of Plantwide Oscillations 
 
Detection of plantwide oscillation may not be a 
difficult problem. Often times the plant operators 

notice some oscillations in the plant, which leads to a 
deeper investigation of the problem and may cause the 
invention of a plantwide oscillation of a larger nature. 
However, it is difficult to find all variables oscillating 
together out of the hundreds or thousands of variables 
in a chemical plant. Before a full scale oscillation 
diagnosis exercise is undertaken, it is important to find 
all signals oscillating at the same frequency as the root 
cause generally lies within this set. In contrast to this, 
most of the available techniques for detection focus on 
a loop by loop analysis (Hagglund, 1995; Taha et al., 
1996; Miao and Seborg, 1999). Recently, Thornhill 
and co-workers have presented some detection tools 
that consider the plant-wide nature of oscillations 
(Thornhill et al., 2003a). To detect oscillations in 
process measurements and identify signals with 
common oscillatory behavior, use of spectral principal 
component analysis (Thornhill et al., 2002) or 
autocorrelation functions (acf) (Thornhill et al., 2003a) 
is suggested. Over the last few years, some studies 
were carried out to detect plant-wide oscillations 
(Tangirala et al., 2005; Jiang et al., 2006) and to group 
the similar oscillations together. The following are the 
brief description of some the techniques that can be 
used for detecting plant-wide oscillation(s). 
 
3.1 High Density Plot - An excellent Visualisation Tool 
 
This plot describes time series data and their spectra in 
a nice compact form in one plot. From this plot, one 
can easily visualize the nature of the data and the 
presence of common oscillation(s) in the data. 
However, this method cannot provide a list of the 
variables that oscillate together automatically. Figure 1 
is an example of a high density plot. 
 
3.2 Power Spectral Correlation Map (PSCMAP) 
 
The power spectral correlation index (PSCI) is defined 
as the correlation between the power spectra of two 
different measurements. It is a measure of the 
similarity of spectral shapes, i.e., measure of the 
commonness of frequencies of oscillations.  
 
The Discrete Fourier Transforms (DFT) that are used 
to calculate the spectrum are calculated after removal 
of means from the time-series data. However, the 
correlation used in the calculation of PSCI is 
calculated without the removal of mean of the spectra. 
The PSCI for any two spectra |Xi(ω)|2 and |Xj(ω)|2 is 
calculated as 
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As a result, PSCI always lies between 0 and 1. The 
phase information is excluded due to taking the 
magnitude of the DFT of the measurements. In the 
detection of plant-wide oscillations, the objective is to 
collect variables with similar oscillatory behaviour. 
For multivariate processes, the PSCI is a matrix of size 
m × m, where m is the number of measured variables.  
 
In order to provide an effective interpretation of the 
PSCI, the matrix is plotted as a colour map, which is 
termed as the power spectral correlation map. The 
intensity as well as the type of colour in the map is 
assigned in proportion to the value of the correlation 
index. This mapping is performed according to the 
choice of colour and the number of shades in that 
colour. An important aspect of this colour map is its 
ability to automatically re-arrange and group variables 
together with similar shapes, i.e., variables, which 
oscillate at a common frequency and have therefore 
similar values of PSCI. For a detailed discussion on 
this method, refer to (Tangirala et al., 2005). This 
method provides a list of the variables that are 
oscillating together. 
 
4 Diagnosis Techniques for Plant-wide Oscillations 
 
As described in the last section, the detection of plant-
wide oscillation is relatively an easy problem 
compared to the diagnosis of its root-cause. Recently 
there appeared a few papers that described a few 
techniques to perform root-cause diagnosis of plant-
wide oscillation (Zang and Howell, 2006; Zang and 
Howell, 2005; Thornhill et al., 2003b; Thornhill et al., 
2001). 
 
Industrial processes generally deviate from 
Gaussianity and linearity and exhibit nonlinear 
behaviour. The distribution of signals from nonlinear 
processes is often skewed and non-normal. These 
processes can conveniently be studied using Higher 
Order Statistics (HOS) (Nikias and Petropulu, 1993). 
Among the various frequency domain HOS measures 
the bispectrum is the simplest. It is the frequency 
domain counterpart of the third order moments and 
defined as  
 

      (2) 
 
where, X(f) is the Fourier transformation of the data 
series x(t). Equation 2 shows that it is a complex 
quantity having both magnitude and phase. It can be 
plotted against two independent frequency variables, f1 
and f2 in a three dimensional plot. Each point in the 
plot represents the bispectral energy content of the 
signal at the bifrequency, (f1, f2). In fact, the 

bispectrum,B(f1, f2), at point (f1, f2) measures the 
nonlinear interaction between frequencies f1 and f2 
(Nikias and Petropulu, 1993). This interaction between 
frequencies can be related to the nonlinearities present 
in the signal generating systems and therein lies the 
core of its usefulness in the detection and diagnosis of 
nonlinearities. 
 
The bispectrum is normalized in the following way to 
give a measure called bicoherence whose magnitude is 
bounded between 0 and 1: 
 

 
(3) 

 
where ‘bic’ is known as ‘bicoherence’ function. 
Equation 3 can be rewritten as 
 

 
(4) 

 
If Welch’s periodogram method is used to estimate the 
bicoherence, the expectation operator can be replaced 
with a summation operator over the number of data 
segments using the assumption of ergodicity: 
 

 
(5) 

 
The squared bicoherence is usually estimated using 
this equation. 
 
4.1 Test of Gaussianity and Linearity of a Signal 
 
Two indices - Non-Gaussianity Index (NGI) and 
nonlinearity Index (NLI) – were developed in 
Choudhury et al. (2004) to test the Gaussianity and 
linearity of a signal or time series. The indices were 
developed based on the statistical hypothesis test on 
the average squared bicoherence in the principal 
domain (0 < f1 < 0.5, f2 < f1, and 2f1 + f2 < 1) of the 
bicoherence. The average bicohernce was used in the 
formulation of the indices because the estimation of 
bicoherence was not free from spurious peaks. The 
new estimation method described in (Choudhury et al., 
2006a) allows us to modify the previously published 
indices. The modified indices have fewer cases of false 
positives and better capability of detecting 
nonlinearities. The following section describes the 
modification of the indices with a brief overview of the 
old indices.  
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A discrete ergodic stationary time series, x(k), is called 
linear if it can be represented by 

                        (6) 
where e(k) is a sequence of independent identically 
distributed random variables with E[e(k)] = 0, σ2 = 
E[e2(k)], and µ3 = E[e3(k)]. For a linear time series, it 
can be shown that 
 

 
(7) 

Equation 7 shows that for any linear signal, x, the 
squared bicoherence will be independent of the 
bifrequencies, i.e., a constant in the bifrequency plane. 
If the squared bicoherence is zero, the signal x is 
Gaussian because the skewness or µ3 is also zero in 
such a case. To check whether the squared bicoherence 
is constant, two tests are required. One is to determine 
whether the squared bicoherence is zero, which would 
show that the signal is Gaussian and thereby the signal 
generating process is linear. The other is to test for a 
non-zero constant value of the squared bicoherence 
which would show that the signal is non-Gaussian but 
the signal generating process is linear. 
 
4.1.1 Modified Non-Gaussianity Index (NGImodified) 
 
It is well established in the HOS literature that 
bicoherence is a complex normal variable, i.e., both 
estimates of real and imaginary parts of the 
bicoherence are normally distributed (Hinich, 1982) 
and asymptotically independent, i.e., the estimate at a 
particular bifrequency is independent of the estimates 
of its neighboring bifrequencies. Therefore, the 
squared bicoherence at each bifrequency is a non-
central chi-squared (χ2(m)) distributed variable with 2 
degrees of freedom and mean, m. 
 
The following statistical test can be applied to check 
for the significance of bicoherence magnitude at each 
individual bifrequency: 
 

 
(8) 

or, 

 
(9) 

where K is the number of data segments used in 

bicoherence estimation, 
2χ

αc  is the critical value 
calculated from the central χ2 distribution table for a 

significance level of α at degrees of freedom 2. For 

example, at α = 0.05, the value of 
2

05.0
χc  is 5.99. 

 
Often the principal domain of the bicoherence plot 
contains more than a hundred bifrequencies. The 
hypothesis test results for this large number of 
bifrequencies can be conveniently summarized into the 
following modified Non-Gaussianity Index (NGImodified) 

 
(10) 

where bic2
significant are those bicoherence which fail the 

hypothesis test in Equation (9), i.e., bic2(f1, f2) > 
Κ2

2χ
αc

, 

and L is the number of bic2
significant. Therefore, the 

following rule-based decision is suggested: 
 
• if NGImodified ≤ α the signal is GAUSSIAN 
•  if NGImodified > α, the signal is NON-GAUSSIAN 
 
Thus, a signal is non-skewed or Gaussian at a 
confidence level of α if theNGImodified is less than or 
equal to zero. This index has been defined to facilitate 
the automation of this decision. 
 
4.1.2 Modified Nonlinearity Index (NLImodified) 
 
If a signal is found to be Gaussian, the signal 
generating process is assumed to be linear (Rao and 
Gabr, 1980). In the case of a non-Gaussian signal, the 
signal generating process should be tested for its 
linearity. As shown in Equation 7, if the signal is non-
Gaussian and linear, the magnitude of the squared 
bicoherence should be a non-zero constant at all 
bifrequencies in the principal domain because µ is a 
non-zero constant. 
 
A simple way to confirm the constancy of squared 
bicoherence is to have a look at the 3-D squared 
bicoherence plot and observe the flatness of the plot. If 
the squared bicoherence is of a constant magnitude at 
all bifrequencies in the principal domain, the variance 
of the estimated bicoherence should be zero. To check 
the flatness of the plot or the constancy of the squared 
bicoherence, Choudhury et al. (2004) developed a 
nonlinearity index by comparing the maximum 
squared bicoherence with the average squared 
bicoherence plus two times the standard deviation of 
the estimated squared bicoherence. The disadvantage 
of using this index is that the presence of a few large 
peaks significantly bias the standard deviation and 
mean of the estimated bicoherence, which leads to 
some false negatives. The other problem with this 
index is that it cannot give an indication of the extent 
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of nonlinearity because with the increase of peak sizes, 
the mean and the standard deviation also increase. In 
order to avoid these limitations, the index can be 
modified as: 
 

 (11) 

where 2
^

robustcib and 
robustcib ,2

^α are the robust mean 

and the robust standard deviation of the estimated 
squared bicoherence. They are calculated by excluding 
the largest and smallest Q% of the bicoherence. A 
good value of Q may be chosen as 10. There is a 
similar concept used in statistics to calculate robust 
mean called ‘trimmed mean’. The users may choose a 
different value of Q. 
 
Therefore, it can be concluded that: 
 
• if NLImodified≤· 0, the signal generating process is 

LINEAR 
• if NLImodified > 0, the signal generating process is 

NONLINEAR 
 
Since the squared bicoherence is bounded between 0 
and 1, the Nonlinearity Index (NLI) is also bounded 
between -1 and 1. 
 
4.1.3 Total Nonlinearity Index (TNLI) 
 
It is important to measure nonlinearity in terms of a 
metric especially when there is a need to compare the 
extent of nonlinearities in various time series. If a time 
series is detected as nonlinear by the above-mentioned 
NGImodified and NLImodified indices, then the total 
nonlinearity present in the time series can be quantified 
using the following new index: 
 

 
 (12) 

where, TNLI is Total Nonlinearity Index, bic2
significant 

are those bicoherence which fail the hypothesis test in 

Equation (8), i.e., 2K bic2(f1, f2) > 
2χ

αc . The TNLI is 
bounded between 0 and L, where L is the number of 
bic2

significant. 
 
4.1.4 Illustrative Example 1 
 
The purpose of this example is to demonstrate the 
efficacy of the proposed indices in the presence of 
varying noise and extent of nonlinearity of a signal. 
Let a signal be generated as follows: 

 

  
  

(13) 
 
where, f1 = 0.12, f2 = 0.30, φ1 = π/3, φ2 = π/8, nl is a 
multiplication factor employed to represent the 
contribution of the nonlinear component of the signal, 
and d(k) is a white noise sequence. Again, frequencies 
are normalized such that the sampling frequency is 1. 
The quadratic term in Equation 16 will introduce phase 
coupled nonlinearity in the output signal, y. The 
quadratically phase coupled nonlinearities arise due to 
the interactions between any two of the signal 
components at frequencies f1, f2, 2f1, 2f2, f2 - f1, and f1 
+f2. For details refer to (Choudhury, 2004). 
 

 
 

 
 
Figure 2 shows the modified Non-Gaussianity Index 
(NGImodified) and the modified Nonlinearity Index 
(NLImodified) plotted against nl for varying cases of 
signal to noise (SNR) ratio. The dotted lines represent 
the modified NGI and the solid lines show the 
modified NLI. It is clear from the figure that both 
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indices increase with the increase of nonlinearity in the 
signal. The total nonlinearity index shown in Figure 3 
represents the extent of nonlinearity in the signal. For 
nl = 0, there is no nonlinearity. Therefore, TNLI = 0. 
With increase of nl, the TNLI also increases. The 
amount of noise influences the calculation of all 
indices because the denominator of the bicoherence is 
affected by the noise. 
 
5. Investigating nonlinearity of a Continuously 
Stirred Tank Reactor (CSTR) 
 
In this section, the nonlinearity of a non-isothermal 
continuously stirred tank reactor (CSTR) is measured 
around the operating point used for Case 1 in Marlin 
(1995).The schematic of the CSTR process is shown in 
Figure 4. 
 

 
 
A simple first order irreversible exothermic reaction of 
the form A  B is considered here. Assuming a perfect 
mixing in the reactor and the jacket, the CSTR model 
can be described by the following differential 
equations: 
 

 
 (14) 

The notation and the parameters for simulation are 
given in Table 1.  The simulation of the CSTR with the 
above mentioned parameters results in a steady state 
value of 0.2645 kmole=m3 for CA and 393.9 K for the 
reactor temperature, T. Sinusoids with varying 
amplitudes and frequencies were used to excite the 
process and the subsequent nonlinearity was quantified 
for each case. The results are shown in Figure 5. The 
figure clearly shows that total nonlinearity increases 
with the increase of the amplitude of the excitation 

signal. Also, an increase in frequency of the input 
excitation causes an increase in nonlinearity. 
 

 

 
 
6 Industrial Case Study 1 - Eastman Chemical 
Plant 
 
An industrial data set was provided by the Advance 
Controls Technology group of Eastman Chemical 
Company. Figure 6 shows the process schematic of the 
plant, which contains three distillation columns, two 
decanters and several recycle streams. There are 15 
control loops and 15 indicators on the schematic. 
There are eight flow controllers. Six of them are in 
cascade configuration. The Advanced Controls 
Technology group had identified a need for diagnosis 
of a common disturbance with an oscillation period of 
about 2 hours. Thornhill et al. (2003b) had found out 
and confirmed that the root cause was a control valve 
problem. In this section, the newly proposed procedure 
is applied to this data set to demonstrate its efficacy in 
the detection and diagnosis of the plant-wide 
disturbance. 
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6.1 Data Description 
 
Uncompressed plant data were collected at a sampling 
period of 20 s for the period of two days. Therefore, 
there are 8640 samples for each tag. The data set 
contains 48 variables: 14 process variables (pv’s), 14 
controller outputs (op’s), 15 indicator variables and 5 
cascade loop setpoints (sp’s). 
 
6.2 High Density Plots 
 
Figure 7 shows the time trends and power spectra of 
the first 15 variables which are pv’s.  
 

 
 
The power spectra shows the presence of oscillation at 
the frequency of 0.003 cycles/sample (or about 333 
samples/cycle, nearly a period of 2 hours). This 
oscillation had propagated through out the adjacent 
units and affected many variables in the process. 
Figure 8 show the time trends of controller output 
signals and the indicator variables with their spectra, 

respectively. These figures also show that there is a 
dominant oscillation with frequency 0.003 
cycles/sample which affects many of the variables. 
 

 
 
6.3 Reduction of the problem size 
 
Thornhill et al. (2003b) performed nonlinearity 
analysis using surrogate data method on all 48 
variables. In order to troubleshoot an oscillation, it is 
better to investigate the control error signals for the 
possible presence of oscillations in them. Figure 9 
shows the time trends and power spectra of the control 
error signal for the 15 control loops. This figure clearly 
shows that only four loops namely LC1, TC1, LC2 and 
TC2 have oscillations at a frequency of 0.003 
cycles/sample (or about 333 samples/cycle, nearly a 
period of 2 hours). Therefore, as a first attempt to 
diagnose the root-cause of this oscillation, only these 
four control loops were examined for performing a 
nonlinearity test. 
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6.4 Detection of Plantwide Oscillation by PSCMAP 
 
Figure 10 shows the PSCMAP of the 15 error variables. 
It is again clear from this figure that only LC1, TC1, 
LC2 and TC2 loops have similar oscillation. 
 

 
 
6.5 Nonlinearity analysis using bicoherence based 
indices 
 
Nonlinearity analysis has been performed on the error 
signals of the four control loops. In order to exclude 
any effect from oscillations other than the frequency of 
0.003 cycles/sample (or about 333 samples/cycle, 
nearly a period of 2 hours), the data was filtered using 
a band-pass Wiener filter with boundaries of [0.001 to 
0.1] cycles/sample. Then, the filtered data were down-
sampled by a factor of 10 in order to make them 
suitable to use with the parameters of the bicoherence 
estimation algorithm. The direct method of 
bicoherence estimation using an approach similar to 
Welch’s average periodogram estimation was used 
where a 128 point FFT was implemented using 128 
samples for each data segment. For details, refer to 
(Choudhury, 2004). Downsampling the data by a 
factor of 10 reduces the oscillation period to 
approximately 34 samples/cycle. Therefore, a 128 
samples segment of the data contains enough number 
of cycles of oscillation to perform a bicoherence 
estimation. The results of this analysis are shown in 
Table 2.  

  

The table clearly shows that TNLI is highest for loop 
LC2, i.e., this loop has the maximum nonlinearity. 
This is also the loop that was identified as a root-cause 
in a previous analysis performed by (Thornhill et al., 
2003b). Therefore, it can be concluded that the Total 
Nonlinearity Index (TNLI) can correctly identify the 
root cause of plantwide Oscillation problems caused 
by nonlinearity related faults. 
 
6.6 Diagnosis of the problem in Loop LC2 
 
Once a nonlinearity is detected using higher order 
statistical method, the pv-op plot is used to diagnose its 
cause. It is well known (Hagglund, 1995; Rengaswamy 
et al., 2001; Choudhury et al., 2005; Choudhury, 2004) 
that the presence of stiction in control valve in a 
control loop produces limit cycles in the controlled 
variable (pv) and the controller output (op). For such a 
case, the pv-op plot shows elliptical cyclic patterns, 
which are taken as a signature of valve stiction. If no 
such patterns are observed, it is concluded that there 
may be valve problems other than stiction. Note that 
for the cases of tightly tuned controller or a process 
with time delay, the pv-op plot may also exhibit 
elliptical patterns. But they do not add nonlinearity in a 
control loop. Therefore, these cases do not pass the 
nonlinearity test. The pv-op plot is investigated only 
after a successful nonlinearity detection in the loop. 
That is why the pv-op plot should not be used alone to 
detect stiction. This must be used in conjunction with 
the nonlinearity test. For a detailed discussion on these 
issues, refer to Choudhury et al. (2004),Choudhury et 
al. (2006). 
 
 

 

 
 
Figure 11 shows the diagnostic plots for this loop. 
Figure 11(a) shows that there are significantly large 
peaks in the bicoherence plot indicating a nonlinear 
loop. The values of NGI and NLI for this loop are 0.15 
and 0.42, respectively, which clearly indicates that the 
loop exhibits nonlinearity. Once a loop nonlinearity is 
detected, it should be checked whether this is due to 
stiction or other process nonlinearity. Figure 11(b) 
shows the pv-op plot for this loop. The plot clearly 
shows an elliptic pattern indicating the presence of 
stiction in the control valve. The apparent stiction is 
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quantified to be approximately 3% using the method 
described in Choudhury et al. (2006).  
 
Similar results of root cause diagnosis were also 
discussed in Thornhill et al. (2003b). It was reported 
that the control valve of loop LC2 suffered from a high 
static friction or stiction problem (Thornhill et al., 
2003b). It has been confirmed that the control valve 
caused control variable LC2.pv to oscillate, and the 
oscillation passed through the feedback controller and 
made the controller output LC.op also to oscillate. 
After that, the oscillations propagated to the 
temperature control loop TC1 in the second distillation 
column and caused the temperature to oscillate. This is 
the reason why temperature indicator TI4.pv and 
control variable TC1.pv had oscillations too. For more 
information, refer to Thornhill et al. (2003b). 
 
7 Industrial Case Study 2 - SE Asia Refinery 
 
This case study describes the method applied to a 
refinery data set, courtesy of a SE Asian Refinery. A 
simplified schematic of the refinery process is shown 
in Fig 12.  
 

 
 
The data set consisting of 512 samples of 37 
measurements sampled at 1 min interval. It comprises 
measurements of temperature, flow, pressure and level 
loop along with some composition measurements from 
the gas analyzers. The process contains a recycle loop 
from the PSA unit to the reformer unit. Controller 
errors (SPPV) are analyzed for control loop 
measurements. The time trends of the controller errors 
and their corresponding power spectrum are already 
presented in Figure 1. It is clear from both figures that 
there is very dominant oscillation at the frequency of 
0.06 or approximately 17 samples/cycle. This 
particular oscillation was all over the plant and 
affected the plant operation a lot. 
 
 

7.1 Oscillation Detection by PSCMAP 
 
The rearranged spectral correlation colour maps is 
shown in Figure 13. This clearly identifies that the tags 
2, 3, 4, 8, 9, 10, 11, 13, 15, 16, 19, 20, 24, 25, 28, 33 
and 34 have similar spectral shape and are affected 
with the above-mentioned oscillation.  
 

 
 

 
7.2 Oscillation Diagnosis 
 
The power spectral correlation map finds that tags 2, 3, 
4, 8, 9, 10, 11, 13, 15, 16, 19, 20, 24, 25, 28, 33 and 34 
are oscillating with the frequency 0.06. The total 
nonlinearity test was applied to only these tags to trou- 
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-bleshoot this oscillation. Table 3 shows the results of 
this analysis. It is clear from the figure that the tag 34 
is the most nonlinear tag because the total nonlinearity 
index (TNLI) is highest for this tag. Therefore, the tag 
34 can be treated as the potential root-cause of this 
plantwide oscillation problem. This finding is in 
agreement with other previous studies performed on 
this data set (Thornhill et al., 2001). 
 
8 Conclusions 
 
This paper presents a systematic method to diagnose 
the root-cause of a plant-wide oscillation problem. The 
plant-wide oscillation can be detected using high 
density plot or spectral correlation color map. Then the 
variables oscillating together are tested for possible 
presence of nonlinearity in them. The variable or the 
control loop that has the highest amount of 
nonlinearity should be treated first as a possible 
candidate for the cause of the plant-wide oscillation. A 
list for priority maintenance can be prepared based on 
the Total Nonlinearity Index (TNLI). The pv-op plot 
can be used to diagnose the fault of a control loop. The 
proposed method has successfully been applied on 
simulated as well as industrial data sets. 
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