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Abstract 
The Danish physiologist, August Krogh is the founder of the theory of oxygen transport to tissues. It was 
his famous tissue cylinder model developed for skeletal muscle, together with his colleague mathematician 
Erlang that laid down the foundation of the mathematical modeling of oxygen transport to tissues. Here an 
analytical solution of the Krogh’s model has been presented based on justifiable assumptions in order to 
validate the numerical approach used to solve more realistic oxygen transport models. The numerical 
solution of Krogh’s model is performed using computational fluid dynamics (CFD) software CFX 4.4. 
From the analytical solution, it is demonstrated that variation from the numerical result is less than 0.2% 
which in turn justifies the use of computer software in developing mathematical model for such 
physiological systems like BM.   

 
 
Introduction 
 
The mathematical modeling of oxygen transport 
processes in the human bone marrow (BM) is a very 
important arena of biological systems modeling that 
offers numerous clinical or medical applications. The 
BM is the sole site for effective hematopoiesis or 
blood cell production in the adult human being and 
oxygen is the principal nutrient for differentiation and 
proliferation of BM hematopoietic cells. So it is very 
important to have a better understanding of oxygen 
tension/concentration (pO2) levels in the BM.  
 
At present, direct in vivo measurements of pO2 are 
practically impossible in BM and so, detailed modeling 
is the only available means to provide reasonable 
estimates. August Krogh’s pioneering work of tissue 
cylinder model is the cornerstone of such mathematical 
modeling. Due to the physical inaccessibility of the 
BM, no major study has been undertaken to-date that 
investigates the effect of oxygen and its distribution 
within the BM microenvironment. However, several 
sophisticated models have been developed for other 
tissues including the brain, muscle, skin and kidney. 
Although Krogh’s model has been the starting point, in 
general, for all these models, in which the tissue is 
approximated as a cylinder with a single capillary at its 
centre, mathematical modeling of pO2 distribution in 
the human BM is very different and more challenging 
to that of other tissues due to the complexity of the 
vascular structure and the heterogeneity of the tissue 
region.  
 
The use of numerical method necessitates the 
verification of the solution obtained and typically the 

validation is via experimental results.  However, as 
stated previously, the physical inaccessibility of the 
human bone marrow has hindered any detailed 
analysis through experimental methods. Using 
simplifying, but reasonable assumptions, an analytical 
solution to the oxygen transport model has been 
presented here.  This in turn has been compared to the 
numerical solution obtained for the Kroghian model 
from the CFD software CFX 4.4.  The geometry for 
the Kroghian system is presented in Figure 2, utilized 
to obtain a numerical solution. 
 
Krogh’s Tissue Cylinder Model 
 
The foundation of the theory of “oxygen transport to 
tissue” was established by August Krogh, a Danish 
physiologist, who provided the first insights into the 
role of the smallest micro vessels in the supply of 
oxygen to striated or skeletal muscle. Together with 
his colleague, mathematician Erlang in 1918, Krogh 
developed the famous mathematical model named 
‘Krogh’s cylinder model’, which described   how 
oxygen is delivered by a single capillary of a uniform 
array of capillaries to a surrounding tissue cylinder2. 
He theorized that the rate of transport is dependent 
upon the number and distribution of capillaries. In 
addition, he presumed that the capillaries are the sole 
supplier of oxygen to blood and each one obtained all 
of its oxygen by convection (bulk flow) from the 
terminal arterioles. Each capillary, in turn, served as an 
independent diffusive source delivering oxygen to a 
single distinct volume of tissue with homogenous 
oxygen consumption. Thus, Krogh’s model predicted a 
linear decrease in hemoglobin oxygen content along 
each capillary3. The model also captures the 
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longitudinal and radial O2 gradients within the 
capillary and surrounding tissue, further providing 
significant insights into the dynamics of oxygen 
delivery to the tissues2.   
 
The essence of Krogh’s model lies in the assumption 
that the tissue can be subdivide into circular cylindrical 
units, each of which has a capillary oriented along the 
axis and the units do not exchange oxygen with each 
other (Figure 1). In formulating this geometrical 
model, Krogh had in mind the capillary geometry in 
skeletal muscle where muscle fibers have a preferential 
direction and capillaries tend to be oriented along the 
fibers. 
 

 
Fig 1. Geometry of the Krogh’s tissue cylinder 

model5. 

 
The assumptions for formulating an equation 
governing tissue oxygen transport, are, 1) pO2 
distribution in the tissue cylinder is axisymmetric, 2) 
the permeability of tissue to oxygen or the Krogh 
diffusion coefficient, K=Dtαt is independent of spatial 
position; 3) O2 in the tissue is not bound to a carrier. 
Under these assumptions, the equation governing 
oxygen transport in the tissue can be written in the 
form4 
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At the outer boundary of the tissue cylinder the flux of 
oxygen is zero in accordance with the assumption that 
adjacent units do not exchange oxygen. Hence 

 Rrat         0
r
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∂
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Krogh further assumed that, 4) a steady state condition 
(the term ∂Pt/∂t in equation 1 is zero), 5) a constant 
oxygen consumption rate, 6) negligible axial diffusion 
(the term ∂2Pt/∂z2 is small) 
 
He did not consider the transport of oxygen in the 
capillary; rather the pO2 at the capillary wall was 
specified: 
 cwt Rrat          PP ==              (3) 

The solution of equation 1 with boundary conditions 2 
to 3 is 
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This equation gives the radial distribution of tissue pO2 
in terms of capillary and tissue cylinder radii and tissue 
permeability. In particular, it permits the calculation of 
the minimum tissue pO2, which occurs at the outer rim 
of the tissue cylinder, i. e. at r= R.  
     
The Oxygen Transport Equation 
 
Substance diffusion is an equilibration process in 
which substance molecules are transferred from loci of 
higher concentration to ones of lower concentration 
and this is the basis of oxygen transport in blood. The 
basic law that is applicable in this study is Fick’s 
second law of diffusion and the Henry-Dalton law, and 
its application yields the following equation: 
 pK

t
p 2∇⋅=
∂
∂α                            (5) 

where α is the O2 solubility, ∂p/∂t is the change in pO2 
with time and 2∇  is the Laplace operator. 
In addition to the diffusion processes there are other 
mechanisms that exert their influence on the local 
oxygen distribution; these include1: 
 

1. Physiological oxygen sink; which may vary 
with local pO2 (michaelis-menten kinetics). 

2. Presence of O2 carrier, hemoglobin (Hb) 
implies the release or binding of oxygen.  

3. This carrier bound O2 (Hb-O2) represents a 
second oxygen species. The exchange 
between carrier-bound and free O2 is 
quantified via the release rate R; which 
constitutes the link between these equations. 

4. Facilitated diffusion enhances free O2 
diffusive transport. 

5. Local convection displaces free and Hb-O2 at 
a rate depending on the velocity vector (v). 
The change in local O2 and Hb-O2 
concentrations is proportional to the 
magnitudes of v and the concentration 
gradients. 

 

 
Fig 2. Krogh’s tissue cylinder. 
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Taking into account the above factors, the O2 transport 
equation can be written as1, 4: 
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where R represents the net rate of carrier O2 release. 
Under most conditions, it is further possible to reduce 
the above set of equations to form a single equation 
under the assumption that the reaction rate described is 
extremely fast and thus the two states are always in 
equilibrium. Accordingly, the hemoglobin saturation (γ) 
solely depends on the partial pressure (pO2). Thus 
equations 6 and 7 can be reduced to: 
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Applying the following chain rule, the above equation 
can be written as 
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Simplification of the above equation gives 
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 The term Kb (1+…) is referred to as effective 
conductivity Keff. Hence, the oxygen transport equation 
for the blood region becomes  
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In cylindrical co-ordinates, the above equation can be 
written as,  
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Replacing Keff by αbDb and dividing by αb, 
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For the tissue region, the O2 transport eqn can be 
written as  
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where m0 is the volumetric metabolic oxygen 
consumption rate of tissue (assumed constant). 
 
After dividing both sides by αb  
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Boundary Conditions 
The boundary conditions needed to solve equations 15 
and 16 are as follows: 
Blood region: crrLz ≤≤≤≤ 0 and   0       (18)                                  

BC 1: z =0, pb = pb(t) 
BC 2: z = L, ∂pb/∂z = 0 
BC 3: r = 0, ∂pb/∂r = 0 

BC 4: r = rc, pb = pt and Db
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Tissue region: tc rrrLz ≤≤≤≤  and   0      (19)                                   

BC 5: z = 0, ∂pt/∂z=0 
BC 6: z = L, ∂pt/∂z=0 
BC 7: r = rt, ∂pt/∂z=0 
These two boundary conditions state that oxygen 
cannot leave the tissue region at either end by axial 
diffusion. 
 
Analytical Solution 
 
Solution of the above equations for the oxygen 
concentrations within the blood and tissue regions is a 
formidable problem which can be accomplished 
numerically with the help of computational techniques 
but, a reasonable analytical solution can be obtained 
with some simplifications and this was explored by 
Fournier6. 
 
The basic assumptions include, 1) steady-state 
condition, 2) m is constant, 3) negligible axial 
diffusion within the tissue region, 4) within the 
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capillary, negligible axial diffusion in comparison to 
axial convection. 
 
Applying these assumptions in equation 15 gives  
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Radial averaging of the above equation gives  
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The radially averaged pO2 level in the blood, 
bp  can 

be defined as 
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This allows equation 22 to be written as 
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Applying BC 4 in the above equation, we have 
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The basic assumptions simplifies equation 17 to the 
following form 
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Integration of the above equation two times followed 
by application of the boundary conditions 4 and 7 in 
equations 18 and 19 gives the following result. 
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Equation 27 is the analytical solution of the oxygen 
concentration equation in the tissue region. 
 
Differentiation of Equation 27 with respect to r at r = rc 
gives the following equation 
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Using this result in equation 26 gives 
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This equation may be integrated to give the following 
result, 
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Equation 31 is the analytical solution of the oxygen 
concentration equation in the capillary region. 
 
Results and Analyses 
 
The results obtained by using CFD software CFX 4.4 
for the numerical solution of the Kroghian model have 
been compared with the results of the aforementioned 
analytical solutions in a view to justify the use of CFX 
4.4 for developing more realistic mathematical model 
of bone marrow7.  
 
Figure 3 depicts the comparison between analytical 
and numerical solution for the tissue region at an input 
oxygen partial pressure of 80 mm Hg and a radial 
distance of 160 µm in the capillary region. It clearly 
demonstrates that the oxygen partial pressure gradually 
decreases with the increase of radial distance in the 
tissue region, which signifies that the oxygen 
concentration distant from the supplying region 
experiences lower oxygen content.  This in turn can 
affect the cellular functions residing in this region, 
such as granulopoietic cells.  The small variation in the 
partial pressure of oxygen is due to the choice of the 
lowest consumption rate for the cells (granulocytes).  
 
 

 
Fig 3.  Plot of numerical vs. analytical solution for 

tissue region at pO2 = 80 mm Hg and Z = 160 
µm. 
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Fig 4. Plot of numerical solutions in different 

capillary distances for the tissue region at 
pO2 = 80 mm Hg. 

 

 
Fig 5.  Percentage error in between numerical and 

analytical solution for the tissue region at pO2= 80 
mm Hg. 

 

 
Fig 6.  Comparison between numerical and analytical 

solution for the capillary region at pO2 = 80 mm 

 
Fig 7.  Percentage error between numerical and 

analytical solution for the capillary region at pO2 
= 80 mm Hg. 

 
Figure 4 illustrates the varying oxygen tension with 
radial distance in the BM microenvironment, at 
different axial distances in the capillary region. The 
main objective of this section is to high-light the 
minimal error between the numerical solutions 
obtained from CFX when compared to an analytical 
solution, and in Figure 5 the error between analytical 
and numerical solution is between (0.05-0.35) %; 
which is within the acceptable margin of error (1%).  
Furthermore, the error decreases exponentially as the 
radial distance increases. 
 
Figure 6 is the comparison of analytical and numerical 
solutions for the capillary region, while Figure 7 is the 
error of the solutions for the capillary. The only 
notable difference from the solutions for the tissue 
region is that for capillary, the trend of decreasing 
oxygen partial pressure is linear which demonstrates 
the homogeneity of the capillary region. Hence, the 
error is also much lower than the capillary region and 
in some instances the error almost diminishes.   
 
Conclusion  
 
Given the small error between the expected and the 
simulated data, the numerical method utilized within 
this work is assumed to be predictive, with a high level 
of confidence. This in turn validates the use of CFX 
4.4 to develop more realistic mathematical models for 
normal as well as pathological BM with potential 
clinical applications.  
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Nomenclature  

Db 
Diffusion coefficient of 
blood in tissue cm2s-1 

Dt 
Diffusion coefficient of 
oxygen in tissue cm2s-1 

HT Volume fraction of 
hemoglobin in blood % 

M Modified Hill Constant 
for CO2 

1/mmHg 

m0 
Volumetric oxygen 
consumption rate mol O2 cm-3s-1 

Keff 
Effective Krogh 
coefficient 

mol O2 cm-3s-1 

mmHg-1 

K Oxygen permeability mol O2 cm-3s-1 

mmHg-1 

Kb 
Oxygen permeability-
blood 

mol O2 cm-3s-1 

mmHg-1 

Kt 
Oxygen permeability-
tissue 

mol O2 cm-3s-1 

mmHg-1 

pO2 
Oxygen tension (Partial 
pressure) mm Hg 

pt 
Oxygen Tension in 
tissue mm Hg 

pb 
Oxygen Tension in 
blood mm Hg 

rt 
Radius of the tissue 
cylinder µm 

rc Radius of the sinus µm 

 
Greek Symbols  
αb Oxygen solubility-blood mol O2 cm-3 

mm Hg-1 

αt Oxygen solubility-tissue mol O2 cm-3 
mm Hg-1 

γ Oxygen saturation 
function - 
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