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Abstract 

Theoretical concepts of F-value, water activity and glass transition are the most successful in determining food stability 
during food processing and storage. The water activity and glass transition concepts are progressed by combining these 
concepts in a stability map named as state diagram. The first part of this paper provides stability criteria based on F-
value, water activity, glass transition and state diagram. The second part explains the recently proposed macro-micro 
region concept in the state diagram. In this concept, 13 micro-regions are mapped and then relative stability criteria 
between the micro-regions are postulated. Final part presents real challenges in combing different hurdles in food 
preservation. 

 
 

1. Introduction 
 

It is a challenge to the food scientists and engineers to 
determine food stability from a scientific basis rather 
than empiricism. The modern food processing 
developed at the end of the 1700s when the Napoleonic 
wars raged. As Napoleon pushed forward into Russia, 
his army was suffering more casualties from scurvy, 
malnutrition, and starvation. The French government 
offered 12,000 francs to anyone who could develop a 
method of preserving food. In 1795 Nicolas Appert, a 
chef took up the challenge. He had a theory that if fresh 
foods were put in airtight containers and sufficient heat 
applied, and then the food would last longer. Appert 
packed foods in bottles, corked them, and submerged 
them in boiling water, thus preserving them without 
understanding of bacterial spoilage. After 14 years of 
experimentation, in 1809 he won the prize and this was 
given to him by Napoleon himself1. In 1804 France 
military had opened their first vacuum-packing plant. 
Although the process was a French military secret, it 
soon leaked across the English Channel2. In 1810, an 
Englishman, Peter Durand, took the process a step 
further and developed a method of sealing food into 
unbreakable tin containers. This technique was 
perfected by Bryan Dorkin and John Hall, who set up 
the first commercial canning factory in England in 
18133.  
 
A theoretical understanding of the benefits of canning 
did not come until Louis Pasteur observed the 
relationships between microorganisms and food 
spoilage after fifty years later. By the 1860s the time 
required to process food in can was reduced from 6 
hours to 30 min through numbers of inventions and 
improvements. The sterilization of canned foods has a 
long tradition and it is most likely that it will continue 
to be popular because of its convenience and extended 
shelf-life (1-4 years at ambient temperature) and for 

being economic3. The time of sterilization process is 
estimated based on F-value concept. 
 
In the 1950s scientists began to discover the existence 
of a relationship between the water contained in a food 
and its relative tendency to spoil. W. J. Scott, an 
Australian scientist, proposed that the active water 
could be much more important to the stability of a food 
than the total amount of water present. The legacy of 
Scott allowed scientist to develop generalized rules or 
limits for the stability of foods using water activity4. 
Labuza et al.5 proposed the earlier food stability maps 
based on the water activity concepts containing growth 
of micro-organisms and different types of bio-chemical 
reactions. Recently, an updated stability map was 
presented by Rahman1.  
 
Scientists identified numbers of limitations of the water 
activity concepts and glass transition concepts in the 
literature. Glassy materials have been known for 
centuries but the glass transition concept was first 
applied to foods with scientific understanding in the 
1980s6. The glass transition concept postulated that 
foods are most stable at its glassy state (i.e. below glass 
transition temperature). White and Cakebread7 first 
highlighted the importance of the glassy state of foods 
in determining its structural stability. They were 
perhaps the first food scientists to discuss the 
importance of the glassy and rubbery states in relation 
to the collapse of a number of high solid systems. The 
significant applications of the glass transition concept 
emerged in food processing in the 1980s, when Levine 
and Slade8 and Slade and Levine9 identified its major 
merits and wide applications.  
 
The glass transition concept was further advanced by 
developing a state diagram for foods. A state diagram is 
a stability map of different states and phases of a food 
as a function of water or solids content and 
temperature10. Most probably Levine and Slade8 
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presented the first state diagram of providone N-vinyl 
pyrrolidone (PVP) in the food science literature by 
illustrating glass line, freezing curve, and intersection of 
these lines as Tg′′ by extrapolation of the extended 
freezing curve by maintaining similar curvature. The 
main advantages of drawing a map are to help 
understanding the complex changes when the water 
content and temperature of foods are changed. It also 
assists in identifying stability of foods during storage as 
well as selecting a suitable condition of temperature and 
moisture content for processing. This state diagram 
provided four macro-regions. In the literature it was 
emphasized that a combination of water activity and 
glass transition concepts could be a powerful tool in 
predicting water activity. These approaches to combine 
both concepts are reviewed by Rahman11,12. Rahman13 
combined glass transition and water activity concepts in 
the state diagram by plotting BET-monolayer values as 
a function of temperature.  
 
A macro-micro region concept combing water activity 
and glass transition concepts in the state diagram was 
first presented in the 18th International Congress of 
Chemical and Process Engineering (CHISA 2008), 24-
28 August 2008, Pragur, Czech Republic, and was 
subsequently published in the International Journal of 
food Properties1. Based on this, Rahman1 developed the 
state diagram and hypothesized 13 micro-regions 
having the highest to the lowest stability based on the 
location from glass transition and BET-monolayer lines. 
In the literature, water mobility and critical temperature 
concepts are also proposed to determine the food 
stability. The objective of this review is to explain the 
concepts of water activity, glass transition, state 
diagram, and macro-micro region in determining food 
stability.  
 
2. F-Value 
 
The inactivation target in sterilization process in canned 
products depends on the types of heat resistance 
bacteria and pH of foods. It is possible to classify food 
products into three groups according to pH: low-acid 
(pH ≥ 4.6), medium-acid (3.7 ≤ pH ≤ 4.6), and acid 
foods (pH ≤ 3.7). The target microorganism in the 
thermal processing of low-acid food (pH ≥ 4.6) is 
Clostridium botulinum. The processing time based on 
first order kinetics can be estimated as14,15: 
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Where, k is the destruction rate constant (s-1), No and NF 
are the initial and final numbers or concentrations of 
micro-organism, and D is the decimal reduction time 
(s), respectively.  
 

The above equation indicates that final concentration 
tends to zero when time tends to infinity, thus it would 
not be possible practically to reach a final concentration 
of zero for the target micro-organism. Considering this 
point, the commercial sterilization criterion should be 
defined so that it is possible to design a process that is 
safe but occurs within a finite time and which is 
economically and practically feasible3. According to 
Stumbo16, commercial sterilization criterion was 
established arbitrarily.  
 
The commercial sterilization criterion states that the 
minimum thermal process should reduce initial micro-
organism concentration by 1012. This is well known as 
12D concept or “botulinum cook”. The commercial 
sterilization was used for several reasons: (i) to 
determine safety margins, (ii) to determine cooking 
requirements, and (iii) to prevent the growth of 
thermphilic spoilage microorganisms. The probability 
argument says, in 12D treatment there will be one spore 
in 1012 cans15. Considering 100 million cans consumed 
per day, an estimate over a 100-year period worldwide 
consumption will be 3.65×1012 cans and the 12D 
criterion would predict three to four outbreaks every 
100 years3.       
 
If we know DT value of target micro-organism at the 
temperature T, we can estimate the processing time to 
achieve 12D. However, the processing time varies with 
the size of a can. Considering D121.1 = 0.21 min for C. 
botulinum, one spore per g and can size of 0.1 L 
(density: 1 g/cc), the processing time (t) to achieve 12D 
is 2.94 min from Eq. 13. Similarly if the can size is 5 L, 
the processing time is 3.29 min. Since any thermal 
process could not be performed at a specific 
temperature instead a varied temperature range during 
heating and cooling time, thermal death time Fo is 
defined for processing as: 
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Where Fo is the processing time (s), Fr is the death time 
at a reference temperature, Tr is the reference 
temperature and z is the thermal resistance constant or 
z-value. Currently, a common commercial sterilization 
treatment for C. botulinum,Fo is in the range of 6-8 min, 
although some companies use Fo of 10 min or higher. 
Considering this processing time, 5L can size and the 
minimum time requirement (6 min) at 121.1oC, 
indicated 1.335×10-25 spores per package. Applying the 
probability concept, we should expect one outbreak in 
several billion years (to be precise, one hundred 
thousand billion years). In fact, at least in the past 50 
years no outbreak has been directly related to the 
sterilization criterion3.   
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Fig. 2. State diagram showing different regions and 
state of foods, 1-13 indicate the micro-regions (updated 
from Rahman, 2006; Rahman, 2009) 
 
6. Macro-Micro Region Concept 
 
Rahman1 developed the state diagram as shown in Fig. 
2 and hypothesized 13 micro-regions having the highest 
to the lowest stability based on the location from the 
glass transition and BET-monolayer lines. For example, 
region-1 (relatively non-reacting zone, below the BET-
monolayer line and glass line) is the most stable and 
region-13 (highly reacting zone, far from BET-
monolayer line and glass line) is the least stable. The 
stability decreased as the zone number increased. The 
most unstable micro-region is the region 13 since it is 
the most reactive mobile region. Applications of this 
concept in food processing are presented by 
Rahman12,13. 
 
7. Future Needs and Concluding 

Comments 
 
The water activity, glass transition or state diagram is 
the simplified nature of the real complexity. It would be 
interesting to incorporate other concepts in order to 
provide a more complete picture of food stability. The 
glass transition by thermal or mechanical relaxations 
measures mobility in a 20-300 nm range, while other 
relaxation techniques, such as Nuclear Magnetic 
Resonance (NMR) measures the molecular relaxation in 
a 1-2 nm range24. There are number of attempts are 
being made to relate glass transition and other mobility. 
However, generic trends or universal rules were unable 
to establish. All foods are not at BET-monolayer or 
below glass transition, thus other hurdles play roles in 
many foods. At present nearly more than 60 hurdles 
may involve in food preservation25. In combining 

several hurdles, such as water activity, storage 
temperature, Fo value and pH into an unified theoretical 
foundation is a real challenge to the food scientists and 
engineering.  
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