Erratum

The author of this article brought attention to publishers that there were errors on page 1,3,4,5 published in previous issue. These errors have been corrected to enhance credibility to readers and the whole corrected article has been published in this issue of JBSP.

The online version of the original article can be found at doi:http://dx.doi.org/10.3329/jbsp.v13i1.37840(http://banglajol.info/index.php/JBSP/article/view/37840)

Effect of Nigella sativa (Kalozira) oil on pain in Long Evans rats

Ismoth Ara Jerin¹, Noorzahan Begum²

1. Department of Physiology, Jalalabad Ragib Rabeya Medical college, Sylhet, Bangladesh. Email: ismothara777@gmail.com
2. Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Bangladesh

Abstract

Background: For thousands of years, *Nigella sativa* has been used in many countries as a spice as well as a protective and curative remedy for numerous health disorders. *Nigella sativa* oil (NSO) suppressed pain in animal models. **Objective:** To assess the effects of *Nigella sativa* oil on pain after single administration with three increasing doses in rat models. **Methods:** This experimental study was conducted in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, from March 2016 to February 2017. For this, 20 (twenty) Long Evans rats (200±20) of both sexes were divided into control (10 ml/kg of 1% solution of Tween 20) and experimental groups (NSO 0.5, with 0.5 ml/kg NSO; NSO 1, with 1 ml/kg NSO; NSO 1.5, with 1.5 ml/kg NSO) with 5 rats in each group. To assess nociceptive pain, central analgesic system and inflammatory pain early phase (1st–5th minutes); inter phase (6th–15th minutes) and late phase (16th–60th minutes) of formalin test respectively were observed. All the agents were given intraperitoneally in a single dose just one hour before the formalin test. In all phases, total frequency of jerking and total duration of flexing and licking of right hind paw were counted after...
administered subcutaneous formalin (50 µL, 2.5%) injection. Statistical analysis was done by ANOVA, followed by Bonferroni’s post hoc test. **Results:** In early phase, NSO significantly reduced the jerking (p ≤ 0.001, in all doses) and flexing and licking (p ≤ 0.001, in higher 2 doses). In interphase, jerking was significantly (p ≤ 0.01) lowered after 1.5 mL/kg of NSO but flexing and licking significantly lowered by all 3 doses (p ≤ 0.05, p ≤ 0.001, p ≤ 0.001). In addition, in late phase jerking and flexing and licking was reduced by higher 2 doses (p ≤ 0.001) and all 3 doses respectively (p ≤ 0.001, in all doses). **Conclusion:** From this study, it may be concluded that, NSO possess analgesic effect and higher two doses were more effective than lower doses.

Keywords: Pain, Nigella sativa, Formalin test.

Methods

This experimental study was conducted in the Pain Laboratory, Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka from March 2016 to February
2017. All experiments and animal care were performed according to the guidelines set in the ‘The ethical guidelines for experimentation in laboratory animals’ by the Animal Experimentation Ethics Committee (AEEC) of the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR B 2002)16.

Procurement and maintenance of animals:
Twenty healthy adult Long Evans rats weighing 180 to 220 gm of either sexes were collected from animal house of Bangladesh University of Health Sciences (BUHS), Darussalam, Mirpur-one (1), Dhaka.

They were housed in Pain Laboratory of the department of Physiology, BSMMU, in specially built plastic cages with 5 rats per cage under a 12/12 hour light/dark cycle. The ambient room temperature was maintained at around 27–28 °C, corresponding to the thermoneutral zone for rodents 20-21. The rats had free access to standard laboratory food and cooled boiled water ad libitum. They were kept there for a period of seven consecutive days for acclimatization prior to the experiment. To avoid circadian influences all the experiments were performed at daytime between 08:00 and 15:00 hours.

Dose schedule:
The *Nigella sativa* oil manufactured by Drug International Pharmaceuticals, Bangladesh was dissolved in 1% solution of Tween 20 (Techno Pharmaceuticals, India). On the basis of doses of supplementation all the rats were divided into 4 groups (5 rats/group). The control group received only 1% solution of Tween 20 (10 ml/kg body weight) 13. Experimental Group NSO 0.5, NSO 1 and NSO 1.5, received 0.5 ml/kg, 1 ml/kg and 1.5 ml/kg body weight of *Nigella sativa* oil respectively, in equal volume to that of 1% solution of Tween 20. All the agents were given through the intraperitoneal route (i.p) one hour before the formalin tests 13,23.

Formalin test:
For acclimatization to the test environment, the rats were placed in the observation chamber (34 x 34 x 34 cm³) of the Plexiglass formalin test box in pairs for fifteen (15) minutes daily for four (4) days, and singly for three (3) days prior to the test 9,10. On the day of experiment, the rat was intraperitoneally injected with 1% solution of Tween 20 or *Nigella sativa* oil 0.5 ml/kg or 1 ml/kg or 1.5 ml/kg body weight, in accordance with the experimental paradigm being followed. One hour later, the rat was restrained manually by a thick towel and the right hind paw was exposed. Fifty µl of dilute (2.5%) formalin was injected subcutaneously into the plantar aspect of the right hind paw with an insulin syringe. Instantly thereafter, the animal was placed in the observation chamber of the Plexiglass formalin test box, and pain behaviours were observed for 60 minutes. A mirror fixed at an angle of 45 degrees beneath the transparent floor of the chamber was used to facilitate unhindered observation. The first 5 minutes (1st–5th) was considered as the early or acute phase, the next 10 minutes (6th–15th) as the interphase, and the last 45 minutes (16th–60th) as the late phase. During observation, the total number of jerking and the total duration of flexing plus licking and/or biting of the injected paw (in seconds) were recorded. A stopwatch was used to count the time 9-10,18.

The results were expressed as mean ± SEM. The data were statistically analyzed by ANOVA, followed by Bonferroni’s post hoc test. In the interpretation of results, p ≤0.05 was considered as the level of significance.

Results
The effects of NSO at three increasing doses (0.5, 1 and 1.5 ml/kg; i.p) on pain were observed in early and late phase of formalin test. Also the central analgesic activity was observed in interphase of formalin test.

In early phase
NSO at all 3 doses (0.5, 1, 1.5 ml/kg) significantly (p≤0.001) lowered number of jerking whereas duration of flexing and licking was significantly (p≤0.001) lowered by only at higher doses (1, 1.5 ml/kg) of NSO.
In interphase
NSO only at dose of 1.5 ml/kg significantly (p ≤ 0.01) lowered the frequency of jerking. Again, NSO at all 3 doses significantly and dose dependently reduces the duration of flexing and licking.

Figure 2: Frequency of jerking (A) and duration of flexing and licking (B) in interphase of formalin test in different groups of rats. Control=1% solution of Tween 20 (10 ml/kg body weight); NSO 0.5= Nigella Sativa Oil 0.5 ml/kg body weight; NSO 1= Nigella Sativa Oil 1 ml/kg body weight; NSO 1.5= Nigella Sativa Oil 1.5 ml/kg body weight. Each bar symbolizes for mean±SE for 5 rats. ***= p≤0.001, compared to control.

In late phase
NSO at doses of 1 ml/kg and 1.5 ml/kg significantly (p≤0.001) reduced both the frequency of jerking and duration of flexing and licking. Again, NSO at dose of 0.5 ml/kg only reduced the duration of flexing and licking significantly (p≤0.001).
In this study, the nociceptive pain variables were lowered in all three study groups after intraperitoneal administration of *Nigella Sativa* Oil (0.5, 1, 1.5 ml/kg; i.p) in comparison to that of control. Similar trends of decrement of nociceptive pain with increment of doses of *Nigella sativa* were also observed by previous researchers in different animal studies though the doses were different from this study12-13, 24. Again, *Nigella Sativa* Oil only at a dose of 1.5 ml/kg (i.p) significantly enhanced central analgesic activity as evidenced by decrease in the frequency of jerking in interphase of formalin test. Again, duration of flexing and licking in interphase of formalin test was significantly lowered in all three study groups than that of control.

All three doses of *Nigella Sativa* Oil significantly lowered inflammatory pain variables compared to that of control. However, the frequency of jerking in late phase of formalin test was significantly lowered only at doses of 1 ml/kg (i.p) and 1.5 ml/kg (i.p) in comparison to control group. There was significant decrement in duration of flexing and licking with the increment of doses in late phase of formalin test. These findings agree the findings of other investigators who observed similar dose dependent reduction of inflammatory pain after supplementation of *Nigella sativa* though the doses were different from this study12-13, 24.

The exact mechanism by which the *Nigella sativa* cause analgesic and anti-inflammatory effect is not clear from this study. However, several researchers proposed various mechanisms on these aspects. The *Nigella sativa* oil might exert antinociceptive effect through the action on opioid receptors. The analgesic activity of *Nigella sativa* oil was antagonized by opioid antagonists (Naloxone)12,25. It has also been suggested that, *Nigella sativa* oil might act through indirect activation of the supraspinal i1 and s opioid receptor12. Opioid receptors are located on the terminals of nociceptive neuron in the spinal cord and on the dendrites of dorsal horn neurons. It might cause presynaptic inhibition by inhibiting the adenylyl cyclase enzyme and reducing the Ca++ influx in the nociceptive afferent neuron. This in turn may decrease the release of glutamate and substance P from these neurons. In addition, it also might
increase the K⁺ conductance in the dorsal horn neuron (postsynaptic neuron) and causes hyperpolarization of these neurons. Both these actions might decrease the duration of EPSP in the dorsal horn neuron, finally leading to decreased pain conduction²⁶.

Numerous molecular targets are involved in the anti-inflammatory activity of *Nigella sativa*. *Nigella sativa* oil might act by inhibiting histamine release from mast cells²⁷. Several researchers proposed that, the anti-inflammatory effect of *Nigella sativa* oil is due to its potent inhibition on eicosanoid generation²⁸-²⁹. It might cause a concentration dependent inhibition of 5-lipoxygenase products and 5-HETE production²⁹. *Nigella sativa* might reduce inflammatory pain by inhibiting production of IL-1β, TNF-α and PGE₂³⁰-³¹.

Conclusion

In the present study, intraperitoneal administration of *Nigella sativa* oil at three different doses were effective in lowering pain. It is also evident that higher dose was more effective than the lower dose of NSO. Therefore, it may be concluded that increasing dose of *Nigella sativa* oil was progressively more effective in lowering pain and inflammation, as observed in this study.

Conflict of interest None

Acknowledgement

This study was financially supported by a research grant from Ministry of Education of Bangladesh.

References

