Caudal tramadol bupivacaine combination for postoperative pain relief in subumbilical paediatric surgery

Md Shafiqul Islam1*, Md Tajul Islam2, Dilip Kumar Bhowmick3, Moinul Hossain4
Akhtaruzzaman AKM5, Shafiqur Rahman AKM6

1Dept. of Anaesthesiology, Shaheed Suhrawardy Medical College and Hospital, Dhaka, Bangladesh, 2Anaesthesia, 50 – bedded Hospital, Tongi, Gazipur, Bangladesh, 3Dept. of Anaesthesia, Square Hospital Ltd., Dhaka, Bangladesh, 4&5Dept. of Anaesthesia and Intensive Care Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh, 6Uttara Adhunick Medical College and Hospital, Uttara, Dhaka

Corresponding Author: E-mail: shafiquek45@gmail.com

Abstract

Background Regional anaesthesia in children provides the advantage of reduced requirements of other anaesthetic agents and of excellent analgesia introduction. Rational use of adjuvant with local anaesthetic in caudal route for prolonged optimal analgesia in paediatric population.

Objectives To evaluate the quality and duration of postoperative analgesia in children undergoing subumbilical surgeries with caudally administered mixture of tramadol and bupivacaine.

Methods Sixty children of ASA physical status I & II scheduled for elective subumbilical surgery were included in this prospective case-control study. Children were randomly assigned to receive caudal analgesia with plain bupivacaine (Group-I) and a mixture of tramadol-bupivacaine (Group-II) respectively. Blood pressure, heart rate, oxygen saturation and duration of analgesia were recorded postoperatively.

Results Study revealed that mean duration of caudal analgesia in Group-I and Group-II were 245.67 ± 6.94 and 612.05 ± 16.49 minutes respectively which was significantly longer (P<0.001) in Group-II. Mean number of postoperative analgesics were 2.97±0.50 and 1.78±0.50 in Group-I and Group-II which was statistically highly significant (P=0.000). Postoperative nausea and vomiting was significantly high in Group-II (P=0.019).

Conclusion Combination of tramadol with bupivacaine results in prolonged analgesia when administered in caudal route. In addition, tramadol is more useful in young children considering less respiratory depression than other opioids.

Key Words: Caudal tramadol-bupivacaine mixture, paediatric post operative analgesia.

Introduction

Post-operative analgesia is essential to provide subjective comfort to restore the function of different organs and to allow the patient to breath, cough and move more easily. Regional anaesthetic techniques in paediatric patients have gained considerable popularity. The primary advantages of regional supplementation are lowering of general anaesthetic requirements and to provide intense post-operative analgesia1.

Caudal anaesthesia is one of the most frequently used regional techniques in children, accounting for almost 50% of all regional techniques2. Many anaesthetic agents have been used for caudal analgesia in paediatric patients most common being...
the lignocaine and bupivacaine. Although administration of bupivacaine into the caudal extradural space has been a standard method of providing post-operative analgesia for paediatric surgery, a single injection may have only a relatively short duration of action\(^3\). Attempts to overcome this problem by combining the local anaesthetic agents with other drugs such as adrenaline, clonidine\(^4\), ketamine, or opioids\(^5\) have met with varied degrees of success.

Tramadol hydrochloride is a synthetic opioid of the aminocyclohexanol group. Its dual mode of action (opioid and non-opioid) may provide some advantages over pure opioid analgesics. Specially considering the side effects\(^6\). Tramadol is not chemically related to opioids, but still it acts on opioid receptors. It is a racemic mixture of the two cis-isomers. The R(+)-isomer has some activity at the \(\mu\) receptor, also inhibits serotonin (S-HT) uptake and S(-)-isomer inhibits noradrenaline uptake. Tramadol inhibits noradrenaline uptake and stimulates serotonin release and these are transmitted in the descending pathways which play an important role in its analgesic profile\(^7\). Caudal block with bupivacaine alone can provide analgesia for only three to four hours\(^8\).

The aim of this study was to determine whether caudal administration of tramadol 2mg.kg\(^{-1}\) with bupivacaine prolongs the duration of analgesia compared with bupivacaine alone with respect to side effects and provides satisfactory analgesia in subumbilical paediatric surgery.

Methods

After approval of ethical committee, sixty children aged 2-10 years of ASA physical status I & II were selected randomly for this prospective case control study. Maintaining the inclusion and exclusion criteria, informed written consent were obtained from legal guardians after explaining them the purpose of this study.

Without pre-medication securing venous access general anaesthesia was induced with thiopentone (3-5 mg.kg\(^{-1}\)) after adequate pre-oxygenation. Tracheal intubations were facilitated with succinylcholine (1.5mg.kg\(^{-1}\) and anaesthesia was maintained using nitrous oxide 66%, Halothane 0.5-1% in oxygen. Neuromuscular block were maintained with atracurium.

Children were allocated randomly into two groups (30 patients) and caudal analgesia was performed just after intubation and before starting surgery using a 23 gauge hypodermic needle under aseptic condition with the child in left lateral position. Group – I (Control group): children received 0.8ml.kg\(^{-1}\) of 0.25% plain bupivacaine plus 1ml normal saline. Group – II (Case group): children received 0.8ml.kg\(^{-1}\) of 0.25% plain bupivacaine together with 2mg.kg\(^{-1}\) of tramadol in 1ml normal saline.

Child was placed in supine position and no analgesic supplement was given during operation. Surgery was started 15 minutes after caudal injection. Heart rate and oxygen saturation (SPO\(_2\)) were monitored continuously and arterial blood pressure was monitored every 5 minutes by electronic oscillometer. Residual neuromuscular block was antagonized with a mixture of neostigmin 50µg.kg\(^{-1}\) and atropine 20µg.kg\(^{-1}\) at the end of operation and duration of surgery was noted. The child was extubated in lateral recovery position. In post surgical ward the following parameters were recorded at 30 minutes interval for the first hour and at 2, 4, 6, 8, 12, and 24 hours after recovery from anaesthesia : heart rate, non-invasive measurement of arterial blood pressure respiratory rate (RR) and oxygen saturation (S\(_{pO2}\)) with pulse oximetry.

Pain score was assessed using modified TPPPS (toddler preschooler postoperative pain scale) to give a maximum score of 10 (Table-V) according to Tarbell et al\(^9\). Pain score more than 3 required administration of rescue analgesia either with diclofen sodium suppository (1mg.kg\(^{-1}\)) or oral paracetamol (20mg.kg\(^{-1}\)).

Total numbers of analgesic requirement in 24 hours postoperative period were recorded. Mean number of analgesic required in twenty four hours postoperatively were 2.97±0.50 and 1.78±0.50 in Group – I & II respectively (Fig 1).
The incidence of side effects if any occurred was recorded.

Data was collected on pre-designed data collection sheet and was analyzed for statistical significances by unpaired student’s ‘t’ test or chi-square (χ^2) test as appropriate. $P<0.05$ was considered significant.

Results

There were no significant differences among the groups regarding demographic data and duration of surgery (Table I).

Haemodynamic data were analyzed by comparing heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) between two groups and no significant differences were observed as shown in Table II.

Mean durations of first analgesic requirement in the postoperative period were 245.67 ± 6.94 minutes in group – I and 612.05 ± 16.49 minutes in group – II. There was statistically highly significant difference between two groups ($P = 0.00$) as shown in Table IV & Figure II.

The two groups were statistically matched for ventilator frequency (RR) and oxygen saturation (SpO_2) having no differences between them as shown in (Table III).

<table>
<thead>
<tr>
<th>Table I</th>
<th>Patient characteristics and duration of surgery.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Gr - I</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>5.30 ± 0.51</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>14.43 ± 0.85</td>
</tr>
<tr>
<td>Duration of surgery (min)</td>
<td>55.64 ± 2.46</td>
</tr>
</tbody>
</table>

Values are expressed as mean±SD. Data are analyzed by Student’s ‘t’ test. $p<0.05$ significant

<table>
<thead>
<tr>
<th>Table II</th>
<th>Changes of haemodynamic parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Gr – I</td>
</tr>
<tr>
<td>HR/min</td>
<td>104.83 ± 1.87</td>
</tr>
<tr>
<td>SBP (mm of Hg)</td>
<td>91.23 ± 1.50</td>
</tr>
<tr>
<td>DBP (mm of Hg)</td>
<td>52.00 ± 1.65</td>
</tr>
</tbody>
</table>

Values are expressed as mean±SD. Data are analyzed by Student’s ‘t’ test. $p<0.05$ significant

<table>
<thead>
<tr>
<th>Table III</th>
<th>Changes of respiratory rate & SpO_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Gr – I</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>18.73 ± 0.64</td>
</tr>
<tr>
<td>SpO$_2$%</td>
<td>100.00 ± 0.69</td>
</tr>
</tbody>
</table>

Mean ± SEM; $P<0.05$ – Significant.

<table>
<thead>
<tr>
<th>Table IV</th>
<th>First analgesic requirements in minutes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Gr – I</td>
</tr>
<tr>
<td>1st dose analgesic rescue in minutes</td>
<td>245.67 ± 6.94</td>
</tr>
</tbody>
</table>

Mean - SEM; $P<0.05$ – Significant; $P<0.01$ highly significant. HS – highly significant.
Mean number of analgesic required in 24 hours postoperatively were 2.97±0.50 in group-I and
1.78±0.50 in group-II which revealed statistically highly significant differences in analgesic
requirement between two groups (P=0.00).

Though sedation score did not differ significantly between the two groups (P>0.05) but incidence of
nausea/vomiting was significantly higher in group-II (P=0.019). It was mild and occurred once
and well managed with safe anti emetic drugs like 5-HT\textsubscript{3} receptor antagonist e.g. Ondansetron
(0.1mg.kg-1) I/V or orally. No other side effects were seen.

Table V Modified TPPPS pain score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score 0</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal complaint, cry</td>
<td>None</td>
<td>Once</td>
<td>> once</td>
</tr>
<tr>
<td>Groan / moan / grunt</td>
<td>None</td>
<td>Once only</td>
<td>> once</td>
</tr>
<tr>
<td>Facial expression</td>
<td>Neutral</td>
<td>Once grimace</td>
<td>Grimace > once</td>
</tr>
<tr>
<td>Restless motor behaviour</td>
<td>None</td>
<td>Once episode only</td>
<td>> once episode</td>
</tr>
<tr>
<td>Rub / touch painful area</td>
<td>None</td>
<td>Once only</td>
<td>> once</td>
</tr>
</tbody>
</table>

Discussion

Regional anaesthesia in children provides the advantage of reduced requirements for other
anaesthetic agents and of excellent analgesia. The caudal approach to the epidural space has
experienced a resurgence of interest among paediatric anaesthesiologists10. Any surgical
procedure below umbilicus can be performed under caudal anaesthesia and can be benefited from the
post operative analgesia that the caudal block might provide11.

Caudal administration of bupivacaine is a widespread regional anaesthetic technique for intra and
post-operative analgesia during various surgical procedures in children. The addition of opioid to
bupivacaine is known to prolong the duration of caudal analgesia but the possibility of adverse
effects like respiratory depression, pruritus etc. has limited the use of such mixture12. Caudal
administration of bupivacaine has duration of action of only 2-4 hours4. As a result, systemic
analgesia is usually required as the block wears off. It was observed that the peak serum
concentration of tramadol occurred at 0.55 ± 0.11 hours after caudal administration13 while Lintz et
al14 observed that serum concentration after i.m. injection of tramadol in healthy adults occurred at
0.75±0.38 hours.

In this study, addition of tramadol 2mg/kg to bupivacaine administered caudally provided post-
operative analgesia for 612.05±16.49 minutes in comparison to 245.67±6.94 minutes with caudally
administered bupivacaine alone. This results is in agreement with the results obtained by Stephan
et al who showed that tramadol when added to mepivacaine significantly prolong the duration of a
brachial plexus block15. In our study all children (100%) in both groups required rescue analgesic.

On the basis of mean number of analgesic required in 24 hours post-operative period (POP),
significantly less supplemental diclofenac sodium suppository was required in bupivacaine -
tramadol group (1.78±0.50) compared to bupivacaine group (2.97±0.50). Modified TPPPS
(Toddler Pre Schooler Post-operative Pain Scale) score9 of more than 3 out of 10 (rather than 7 as
in the original) was the indication of first rescue analgesic in all children. There was no significant
difference in two groups as regards to haemodynamic parameters (heart rate, arterial
blood pressure). In this study, incidence of nausea and vomiting was observed in bupivacaine -
tramadol (group II) mixture group (16.7%)
probably due to its systemic absorption, which was mild and well managed with antiemetic drugs. No other adverse effects like facial and body flushing, urinary retention, pruritus, hypotension and any signs of motor weakness were observed in this study. So a combination of bupivacaine – tramadol mixture in caudal route significantly increases the potency and duration of caudal analgesia with minimal adverse effects than the bupivacaine or tramadol alone. Our results concluded that, addition of tramadol to bupivacaine in caudal route provides an optimal analgesia for a longer period than bupivacaine alone. Moreover as an adjunct to bupivacaine, tramadol might be more useful in young children considering less respiratory depression than the other opioids.

References: