



## Prevalence and Pathological Investigation of Colibacillosis in Commercial Poultry Farms at Rajshahi District of Bangladesh

Amina Khatun, Most. Khadija Khatun Lima, Shaziea Rahman, Md. Badsha Fahad, KM Mozaffor Hossain and Rashida Khaton\*



Department of Veterinary and Animal Sciences,  
Faculty of Veterinary and Animal Sciences,  
University of Rajshahi, Rajshahi-6205,  
Bangladesh.

\*Correspondence:

Email: rashidavet@yahoo.com

### How to Cite the Article:

Khatun, A., Lima, M. K. K., Rahman, S., Fahad, M. B., Hossain, K. M. M. and Khaton, R. (2025). Prevalence and Pathological Investigation of Colibacillosis in Commercial Poultry Farms at Rajshahi District of Bangladesh. *Journal of Bio-Science* 33(1): 41-52.

### Peer Review Process:

The Journal abides by a double-blind peer review process such that the journal does not disclose the identity of the reviewer(s) to the author(s) and does not disclose the identity of the author(s) to the reviewer(s).



### Abstract

Avian colibacillosis is considered as one of the principal causes of morbidity and mortality, associated with heavy economic losses to the poultry industry. The study was conducted for observation of prevalence and pathological investigation of colibacillosis in commercial poultry farm at city corporation area of Rajshahi, Bangladesh during the period from July 2023 to June 2024. *Escherichia coli* was isolated from 82.7% of cloacal swabs of apparently healthy birds and 85.0% of sick and dead birds. Average prevalence of colibacillosis, on the basis of age, was higher (65%) in age group 0-2 weeks and lower in >4 weeks (10%). The higher prevalence of colibacillosis was in winter (65%) and lower in summer season (35.71%). In colibacillosis, congested and consolidated lungs with cloudy and thickened air sacs, congested and thickened liver capsules, and enteritis were observed at necropsy. The microscopic lesions were hemorrhage in liver and huge infiltration of heterophils, highly congestion in lung, blunting of villus and reactive cell infiltration, and thickening of fibrous tissue in pericardium. In conclusion, a higher prevalence of colibacillosis (>80%) was observed in commercial poultry farms of city corporation area of Rajshahi, and age and season were the significant risk factors of colibacillosis in broiler chickens.

**Keywords:** Age, Colibacillosis, Prevalence, Pathology, Poultry Farms, Season.



Copyright: © 2025 by the author(s). This is an open-access article distributed under the terms of the [Creative Commons Attribution 4.0 International License \(CC BY-4.0\)](https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Received: 07 December 2024 | Revised: 17 February 2025 | Accepted: 05 March 2025 | Published: 30 June 2025

## Introduction

Poultry industry can provide opportunities for the increase of Gross Domestic Product (GDP) growth rate through ensuring food security and self-employment and finally reducing poverty (Talukdar et al. 2017). Poultry farming plays a very important role for income generation and poverty alleviation particularly for the disregarded women and unemployed youths in Bangladesh by means of self-employment (Ahmed et al. 2021). The poultry population of Bangladesh is 396.038 million in 2023-2024 (BBS 2024). The advancement of poultry industry is facing a problem due to sudden outbreak of bacterial diseases, including colibacillosis, which creates a serious threat in economy of Bangladesh (Khaton et al. 2008). In chickens colibacillosis describes to any local or systemic infection caused entirely or partly by *Escherichia coli*, a major pathogen of commercially produced poultry all over the world (Barnes et al. 2003). *E. coli* strains causing systemic disease in poultry (avian colibacillosis) are called avian pathogenic *E. coli* (Nawaz et al. 2024). *E. coli* has been related to a variety of disease in poultry such as pericarditis, perihepatitis, airsacculitis, peritonitis, salpingitis, panophthalmitis, omphalitis, cellulitis, colisepticemia, coligranuloma and swollen-head syndrome (McMullin et al. 2020).

Avian pathogenic *E. coli* infection occurs in both broilers and layers. It is responsible for omphalitis in chicks and embryo mortality. Lesions seen are mainly polyserositis with fibrin in the air sacs, pericardium, and liver (Kabir 2010). It affects birds of all ages. Day old chicks get infected via the yolk sack, but in older chick become infected mainly airborne. Up to three weeks of ages young broiler chickens are highly sensitive to the disease, but chickens of four weeks and older are regarded quite resistant to primary colibacillosis (Kabir 2010). With expansion of poultry farming, colibacillosis has appeared as a widespread problem in Bangladesh (Islam et al. 2003, Hossain et al. 2004). It causes huge loss specially if there is poor management or stress in broilers such as complicating infections like chronic respiratory disease or mycoplasma (Talha et al. 2001) or under development of the immune system (Aktar et al. 2023 & 2024) causing immunosuppression. Considering these

factors, it needs to prevent and control that infectious disease like colibacillosis. Workable prevention and control measures cannot be undertaken unless the present status of colibacillosis is known. Investigations on colibacillosis in broiler are very scanty in Bangladesh. Therefore, the present study was aimed at determining the prevalence of *E. coli* in apparently healthy, sick and dead chickens on selected poultry farms at city corporation area of Rajshahi as well as studying their colony, staining and biochemical characteristics and also to study the changes in different organs found in chickens with colibacillosis.

## Materials and Methods

A total of 52 cloacal samples from 52 apparently healthy chickens and a total of 40 swabs samples (10 from liver, 10 from lung, 5 from heart and 15 from duodenum of 40 sick and dead birds) and several lesion containing tissues (liver, lung, heart, duodenum) collected from necropsy cases at different poultry farms of Rajshahi city corporation area were used in the present study during the period from July 2023 to June 2024 at the Histopathology laboratory of the Department of Veterinary and Animal Sciences in University of Rajshahi, Rajshahi, Bangladesh. The first step was isolation and identification of *E. coli* on the basis of their colony morphology, staining property, motility and biochemical characteristics from the collected samples. The second step was gross and histopathological examinations of different organs of sick and dead chickens.

### Identification of isolated organisms by microbiological examinations

#### Colony characteristics of the identified bacteria in different agar media

All cloacal and swabs samples were inserted into sterilized screw-capped test tubes containing nutrient broth and preserved at 4°C. During the time of examination, all samples were placed in nutrient agar plate and incubated overnight at 37° C for the growth of the organisms. After primary culture of the organisms, a small amount of inoculum from nutrient agar was sub-cultured in the nutrient agar and MacConkey agar to observe the colony morphology. Characteristic colony morphology of the organisms indicating the features of *E. coli* was selected for subculture on selective media such as Eosin Methylene Blue (EMB) agar. Morphological characteristics (shape, size, surface texture, edge and elevation, color, opacity etc.) of the suspected colonies on different agar media developed within 18 to 24 hours of incubation were carefully studied and recorded.

#### Study on morphological characteristics of the suspected organisms

Using Gram's staining technique; we examined the shape, size and density of the identified organisms under 100x of lighting compound microscope according to Tonus et al. (2011).

#### Motility test of the isolated organisms

The motility test of the isolated organisms was performed by hanging drop preparation to differentiate the motile bacteria from the non-motile one according to Tonus et al. (2011).

#### Identification of Isolated Organisms by Using Specific Biochemical Tests

##### Carbohydrate Fermentation Test

The carbohydrate fermentation test was performed by inoculating 5ml of nutrients in broth culture of the organisms into tubes containing different sugars and incubated for 72 hours at 37°C. Acid production was indicated by the colour change from red to yellow of the medium and gas production was noted by the appearance of gas bubbles in the inverted Durham's tube.

##### Methyl red test

After incubation 2-4 drops of methyl red solution were added to the test tube, which was incubated for 5 days. Positive test was indicated by the persistence of red colour, indicating acidity and negative by yellow colour.

##### Indole test

A sterilized test tube was taken containing 4 ml of tryptophan broth. The tube was inoculated aseptically by taking the growth from 18 to 24 hrs culture. The tube was incubated at 37°C for 24-28 hours. 0.5 ml of Kovac's reagent was to the broth culture. Then it was observed for the presence or absence of ring.

## Pathological examination

### Necropsy examination

The postmortem examination of all the cases was performed for the sick and dead birds. At necropsy, gross tissue changes were observed and recorded carefully by systemic dissection and representative tissue samples containing lesions were fixed in 10% neutral buffered formalin for histopathological studies.

### Histopathological examination

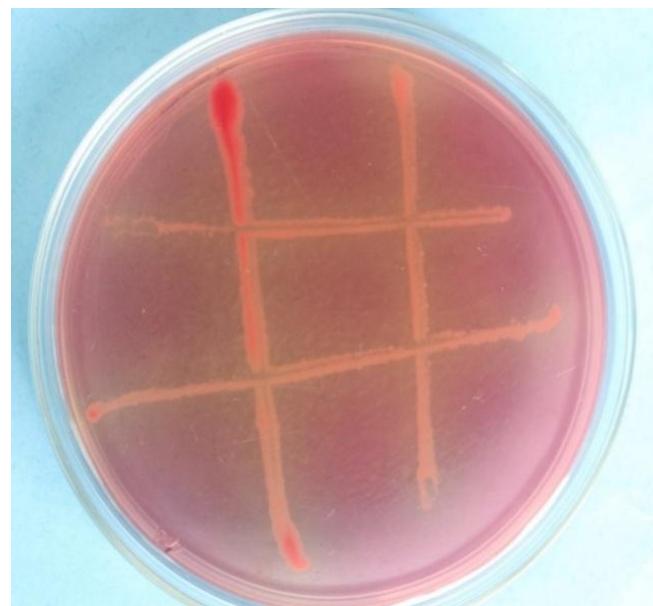
Formalin-fixed tissues were dehydrated in alcohol, cleared in xylene and embedded in paraffin for histological examination. Then, sections were prepared with 5  $\mu$ m thickness and, in accordance with Gofur et al. (2008), stained using the standard Mayer's Hematoxylin and Eosin. Stained tissue sections were examined thoroughly at magnifications of 10 and 40 using compound microscopes. A photographic microscope system (digital camera, model: C-B5, OPTIKA, Italy, attached with a microscope, Model B-293PLi, OPTIKA, Italy) was used to capture the photographs of the stained tissue sections.

## Results

### Prevalence of *E. coli* in cloaca of apparently healthy chickens and different tissues of sick and dead chickens

The prevalence of *E. coli* in apparently healthy birds of different poultry farms and different tissues of sick and dead chickens are shown in Table 1. The prevalence of *E. coli* was 82.7% (layer 84.4% and broiler 80%) in cloacal swabs of apparently healthy chickens (Table 1), whereas the overall prevalence of *E. coli* was 85.0 % in sick and dead chickens, particularly 90% in liver, 60% in heart, 80% in lung and 93.33% in duodenum samples (Table 1). The prevalence of *E. coli* infection was higher in duodenum than liver, lung and heart samples of sick and dead chickens. The prevalence of *E. coli* considering various age groups of bird were 65%, 50% and 10% in 0-2 weeks, 2-4 weeks and >4 weeks, respectively. The higher prevalence of *E. coli* found was observed in age group 0- 2 weeks and the lower prevalence in >4 weeks of age. The season was very statistically significant factor for outbreak of colibacillosis in commercial broiler and layer chicken. The higher prevalence was found in winter season 65% followed by summer season 35.71%.

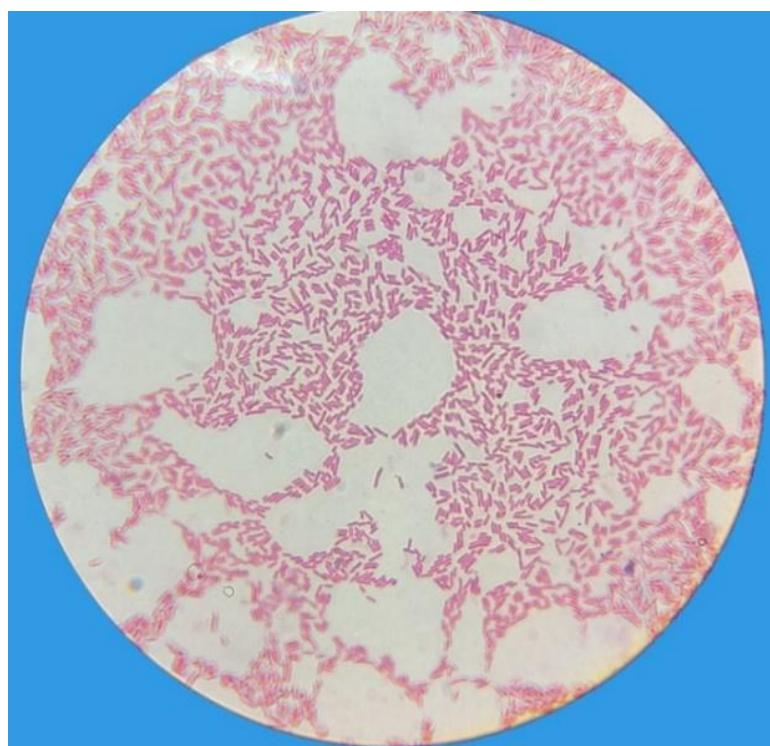
**Table 1:** Prevalence of *E. coli* in apparently healthy, sick and dead chickens.


| Type of bird               | No. of birds examined  | No. of +Ve cases | Prevalence (%) | Overall prevalence (%) |
|----------------------------|------------------------|------------------|----------------|------------------------|
| Layer                      | 32                     | 27               | 84.4           | 82.7                   |
| Broiler                    | 20                     | 16               | 80.0           |                        |
| <b>Sick and dead birds</b> |                        |                  |                |                        |
| Organs examined            | No. of sample examined | No. of +Ve cases | Prevalence     | Overall prevalence     |
| Liver                      | 10                     | 09               | 90.0           |                        |
| Lung                       | 10                     | 08               | 80.0           | 85.0                   |
| Heart                      | 05                     | 03               | 60.0           |                        |
| Duodenum                   | 15                     | 15               | 93.3           |                        |

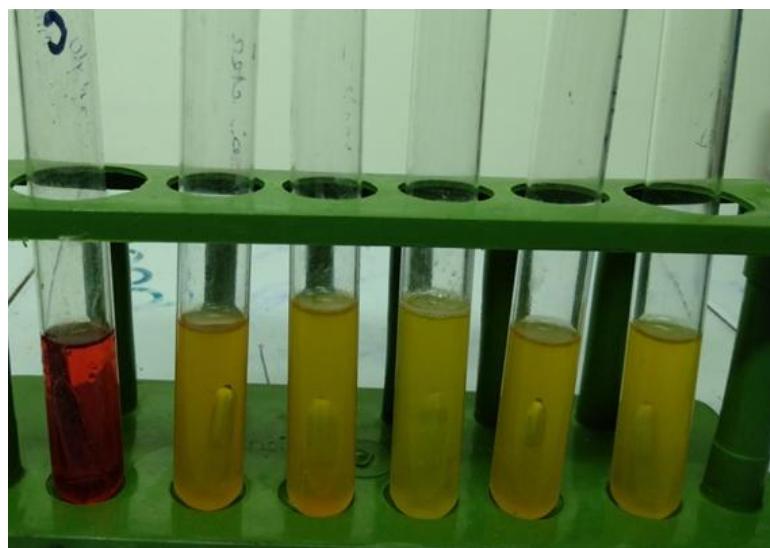
### Colony characters, staining characters and motility test of the identified bacteria

**Colony characters:** Circular, moist, smooth, flat rose-pink colored colonies on MacConkey agar (Fig. 1) and greenish metallic sheen in reflected light, dark or even black centre in transmitted light on EMB agar produced by the organisms (Fig. 2) after overnight incubation were confirmed as *E. coli*.

**Staining characters:** Light microscopic examination of *E. coli* isolates after Gram's staining revealed Gram-negative, pink colored, short rod-shaped organisms arranged as single or in pair (Fig. 3).


**Motility test:** All the *E. coli* isolates were found to be motile with 'hanging drop' preparation under microscope.




**Fig. 1:** *E. coli* isolates showing characteristics of rose-pink colored colonies on MacConkey agar.



**Fig. 2:** *E. coli* isolates showing characteristics greenish colored colonies with metallic sheen on eosin methylene blue agar (EMB).



**Fig. 3:** Isolated *E. coli* in gram's staining (microscopic) showing gram negative, pink color, short rod shape organisms, arranged in single or paired.



**Fig. 4:** Sugar fermentation test.

#### Biochemical test results of the identified bacteria

The results of biochemical tests of the identified bacteria were presented in Table 2. All the isolates fermented dextrose, lactose, maltose and mannitol with the production of acid and gas but did not ferment inositol. Acid production was indicated by the change from reddish to yellow and gas production by the accumulation of gas bubbles in the inverted Durham's tube (Fig. 4). All the isolates were methyl red test positive and presence of red colour ring in the tube, and indole test was also positive.

**Table 2:** Biochemical characteristics of *E. coli*.

| Methyl red test | Indole test | Sugar test |    |    |    |    | Bacteria isolated |
|-----------------|-------------|------------|----|----|----|----|-------------------|
|                 |             | DX         | L  | ML | MN | IN |                   |
| +               | +           | AG         | AG | AG | AG | -  | <i>E. coli</i>    |

Legends: DX, Dextrose; L, Lactose; ML, Maltose; MN, Mannitol; IN, Inositol; AG, Acid and gas; +, Positive; -, Negative.

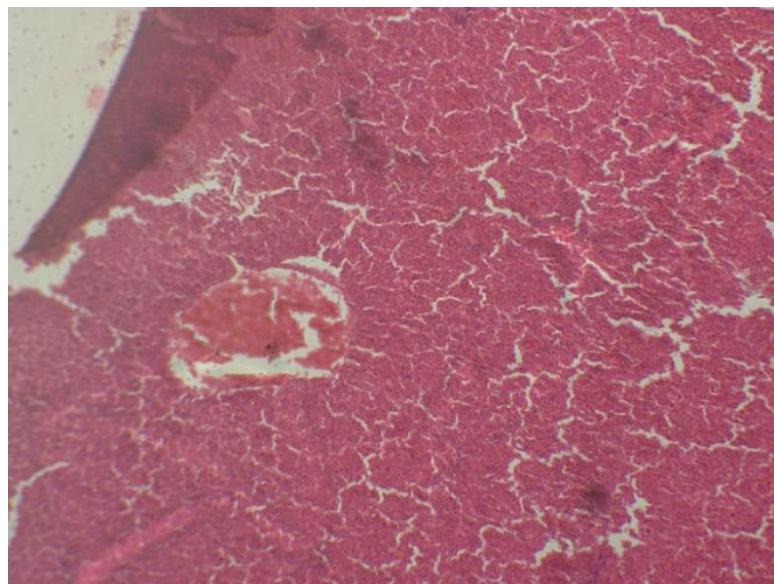
### Pathological study

#### Gross lesions

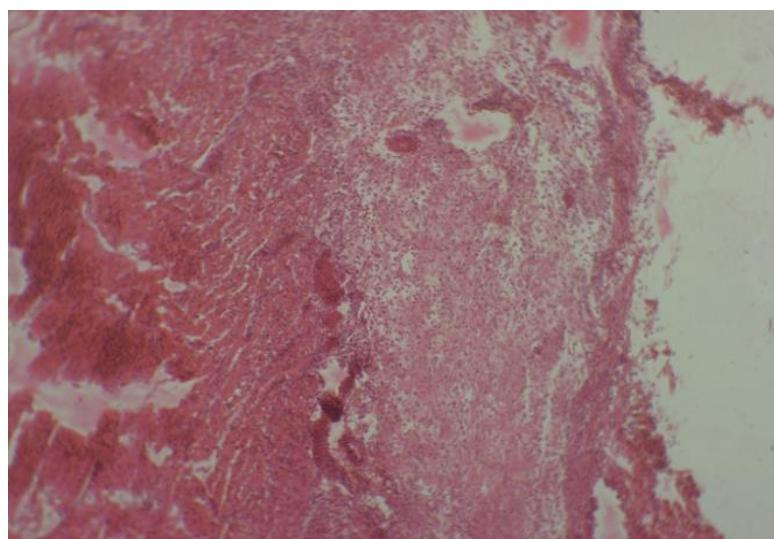
The observed postmortem findings were congested and consolidated lung with cloudy and thickened air sac (Fig. 5), congested and thickened capsule, haemorrhage, perihepatitis in liver, thickened pericardium due to fibrinous pericarditis and thickened pericardial sac with light yellow fibrinous exudates adhering to the heart (Fig. 6).



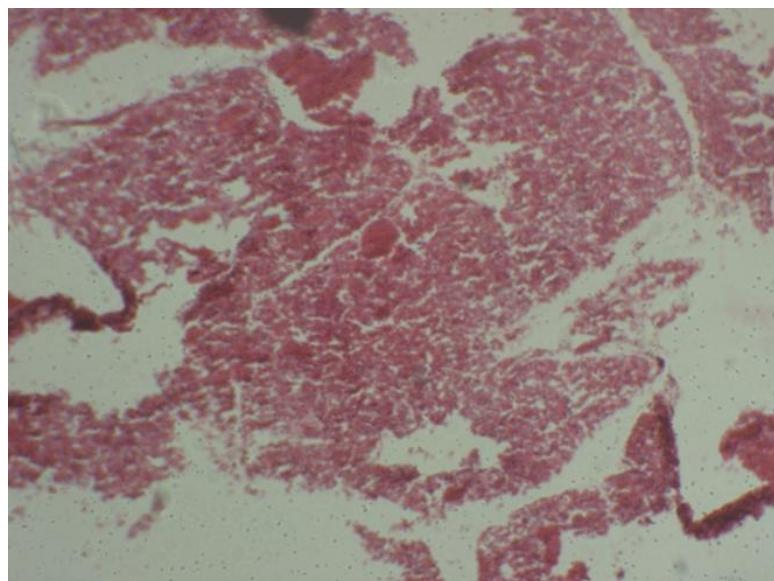
**Fig. 5:** Colibacillosis affected birds showing congested and consolidation lungs.



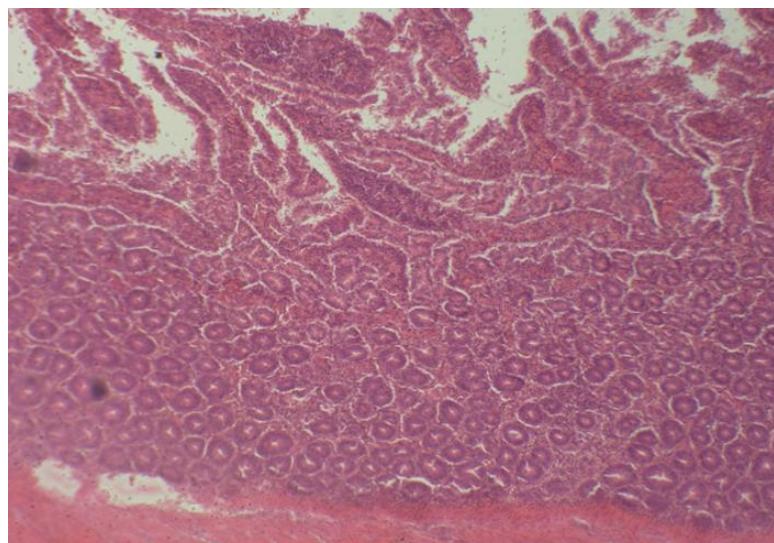

**Fig. 6:** Liver of *E. coli* infected chicken showing thickened liver capsule.


#### Microscopic lesions

The microscopic section of liver showed coagulation type of focal necrosis (Fig. 7), infiltration of heterophils, lymphocytes and macrophages mainly in portal area. In heart, pericarditis, characterized by


thickening of pericardium due to infiltration of RE cells, was observed (Fig. 8). The section of lungs showed congestion, hemorrhage, infiltration of heterophils, macrophages and lymphocytes in the wall of bronchus as well as in the peribranchial alveoli (Fig. 9). Blunting and sloughing off villus, infiltration of inflammatory cells were observed in duodenum (Fig. 10).




**Fig. 7:** The section of the liver of *E. coli* affected birds at 33 weeks of age showing coagulation type of necrosis.



**Fig. 8:** The section of heart in *E. coli* infected chickens exhibiting pericarditis characterized by thickening of pericardium due to infiltration of RE cells.



**Fig. 9:** Lungs of *E. coli* infected birds showed congestion, infiltration of heterophils in the wall of bronchus.



**Fig. 10:** Duodenum of *E. coli* infected birds showed blunting and sloughing off villus, infiltration of inflammatory cells.

## Discussion

The prevalence of *E. coli* was 82.7% in cloacal samples and 85.00% in liver, lung, heart and duodenum samples in the present research work: these findings were in support with the findings of (Khaton et al. 2008) where they showed the prevalence is 83.07% and 87.27% respectively. However, the present findings were lower than those of others (El-Sushon et al. 2002, Haider et al. 2003). On the other hand, Ahmed et al. (2009) reported 52.26% prevalence of *E. coli* in broiler chicken, which was much lower than the present study. Hashem et al. (2017) also found the average occurrence of colibacillosis was 54.55% in commercial broiler in Chittagong district in Bangladesh. The difference in *E. coli* prevalence might be due to the geographic location of farm, age and age and breeds of the birds and also for the resistance power of the commercial chickens due to proper management, vaccination and nutrition. Normally *E. coli* is present in the digestive tract of poultry. The stress factors of any types may enhance the virulence of *E. coli* with the production of disease (Talha et al. 2001). In the present study, the prevalence of *E. coli* isolation in healthy, sick and dead chickens was almost similar. The reasons of similar prevalence in the present work might be due to stress factors in the healthy chickens. The study revealed rose pink colored colonies on MacConkey agar and greenish colonies with metallic sheen on EMB agar

produced by the organisms after overnight incubation were confirmed as *E. coli*; these colony characteristics corresponded with the findings of previous studies (Sharada et al. 1999, Khaton et al. 2008, Tonu et al. 2011). In Gram's staining, the morphology of the isolated bacteria exhibited Gram negative, pink color, short rod to coccoid shape and in the hanging drop technique, all the isolates revealed motile. These findings supported the findings of earlier studies (Khaton et al. 2008, Tonu et al. 2011). In the present study, the entire isolated *E. coli* organisms revealed a complete fermentation of several sugars like dextrose, lactose, maltose, mannitol; and the organisms were motile but did not ferment inositol. These findings also supported the findings of Beutin et al. (1997). The results of methyl red test of all isolates of *E. coli* were positive, like the findings of Mishra et al. (2002) and indole test positive, similar to the findings of Wang et al. (2001). Susceptibility of *E. coli* varies with the age of birds (Awad et al. 2020). The highest prevalence of colibacillosis was 65% in age group 0–2 weeks and the lowest in >4 weeks of age which was 10%. It revealed that the age group was considered to be statistically significant for outbreak of colibacillosis in broiler. Talha et al. (2001) reported higher proportionate prevalence rate of *E. coli* in growing chickens in comparison to adults whereas Bhattacharjee et al. (1996) reported widely prevalent of *E. coli* in both the brooding (12.82%) and pre-peak-post production layer chickens (5.49–8.78%), and this study also recorded widely prevalent of *E. coli* infection in all age groups of chickens (9.52–13.73%). The occurrence of *E. coli* was higher in winter season (65%) followed by summer season (35.71%). Hashem et al. (2017) also reported higher *E. coli* infection in winter season (67.54%) in Bangladesh. Lambie et al. (2000) reported higher *E. coli* infection during rainy season (67.2%). We found an association of risk factors like age, and season of the year with the occurrence of colibacillosis which is supported by the earlier report of Rahman et al. (2004).

To characterize the colibacillosis, pathological study was done by necropsy and histopathological examination. The present study showed different forms (gross lesions) of colibacillosis by necropsy. The observed postmortem findings were congested and thickened capsule, hemorrhage, perihepatitis in liver; congested and consolidated lung with cloudy and thickened air sac, thickened pericardium due to fibrinous pericarditis and thickened pericardial sac with light yellow fibrinous exudates adhering to the heart, mucus, congestion and hemorrhage in the duodenum. The severity of gross lesions was variable in chickens in the present study. These necropsy findings of colibacillosis were also observed by different authors (Islam et al. 2003, Rahman et al. 2004, Ghosh et al. 2006, Chowdhury et al. 2009, Dhamma et al. 2013). The histopathological lesions of colibacillosis were coagulation type of focal necrosis in liver, hemorrhage and highly congestion in lung, destruction of intestinal wall and reactive cell infiltration, thickening of fibrous tissue in pericardium. Similar histopathological lesions have been reported by (Talha et al. 2001, Islam et al. 2003, Ghosh et al. 2006, Khaton et al. 2008, Tonu et al. 2011) in colibacillosis infected broiler chickens. *E. coli* singly does not produce typical gross lesions. The lesions are most prominent when simultaneously infected with other organisms such as other *bacteria*, mycoplasma etc. (Tonu et al. 2011, McMullin 2020). In this study identification of other *bacteria* or mycoplasma was not carried out. *E. coli* can produce diseases becoming attached with mucosal epithelia and another form by invasion to the mucosal epithelia. The recorded lesions of intestine were in the form of degeneration, necrosis and desquamation of mucosal epithelia associated with severe inflammation. On the basis of the recorded lesions, the form of colibacillosis in the present study could be categorized into entero-invasive form of colibacillosis. These types of histopathological lesions in recorded forms of colibacillosis were supported by different authors (Talha et al. 2001, Islam et al. 2003, Ghosh et al. 2006).

## Conclusion

The occurrence of colibacillosis was different in apparently healthy, sick and dead birds, and also varied with the age of broilers and in different seasons. The higher prevalence was in age group 0–2 weeks and in winter season. The most frequent gross lesions were congested and thickened liver capsule; congested and consolidated lungs; cloudy and thickened air sac; mucus, congestion and hemorrhage in duodenum. The major microscopic lesions were hemorrhage and highly congestion in lungs, destruction of intestinal wall and reactive cell infiltration, and thickening of fibrous tissue in pericardium. In summary, a higher prevalence of colibacillosis (>80%) was in commercial poultry farms of city corporation area of Rajshahi district, and age and season were the significant risk factor of colibacillosis in broiler chickens.

**Acknowledgements:** The authors are grateful to the Histopathology laboratory of the Department of Veterinary and Animal Sciences, University of Rajshahi, Bangladesh for the necessary support to conduct this research works.

**Conflict of interest:** The authors declare no conflict of interest regarding the publication of this article.

**Author's contribution:** AK collected samples and data, conducted experiments. RK designed the experiment, supervised the study, and corrected the manuscript. All authors have read and approved the final manuscript.

**Funding source:** This study was not supported by any funding agency.

**Data availability:** All data generated in the study are mentioned in the article and unprocessed data will be available to the corresponding author upon request.

## References

Aktar S, Aesha M, Akter MR, Hossain KMM, Khatun A, Kamruzzaman SM and Gofur MR (2024). Effect of dietary supplementation of probiotic and synbiotic on the post-hatch splenic development in broiler chicken. *Journal of World's Poultry Science* 3(4): 62-68.

Ahmed S, Begum M, Khatun A, Gofur MR, Azad MTA, Kabir A and Haque TS (2021). Family poultry as a tool for improving gender equity and women's empowerment in developing countries: evidence from Bangladesh. *European Journal of Agriculture and Food Sciences* 3(2): 37-44.

Aktar S, Aesha M, Islam MM and Gofur MR (2023). Post-hatch age related development of spleen of broiler chicken: A biometric and histomorphometric view. *Asian Journal of Biological Sciences* 16(4): 515-522.

Awad AM, El-Shall NA, Khalil DS, Abd El-Hack ME, Swelum AA, Mahmoud AH, Ebaid H, Komany A, Sammour RH and Sedeik ME (2020). Incidence, Pathotyping, and Antibiotic Susceptibility of Avian Pathogenic *Escherichia coli* among diseased broiler chicks. *Pathogens* 9(2): 114.

Barnes JH, Vaillancourt JP and Gross WB (2003). Colibacillosis. In: Diseases of Poultry, Saif YM, Barnes JH, Glisson JR, Fadly AM, McDougald LR and Swayne DE (Eds.). Iowa State University Press, Ames, IA, pp. 631-652.

BBS (2024). Bangladesh Bureau of Statistics, Sher-e-Bangla Nagar, Dhaka (<https://file-rajshahi.portal.gov.bd/uploads/0f236d9d-0a28-4fbd-b4d5-593734ed5892//670/9be/f6e/6709bef6e805f380007609.pdf>).

Beutin L, Geier D, Zimmermann S, Aleksic S, Gillespie HA and Whittam TS (1997). Epidemiological relatedness and clonal types of natural population of *E. coli* strains producing shiga toxins in separate population of cattle and sheep. *Applied and Environmental Microbiology* 63: 2175-2180.

Bhattacharjee PS, Kundu RL, Biswas RK, Mazumder JU, Hossain E and Miah AH (1996). A retrospective analysis of chicken diseases diagnosed at the Central Disease Investigation Laboratory, Dhaka. *Bangladesh Veterinary Journal* 30(3): 105-113.

Chowdhury S, Masuduzzaman M and Shatu SN (2009). A pathological investigation to identify different forms of colibacillosis in commercial broiler and layer birds in Chittagong region. *Eco-friendly Agricultural Journal* 2(1): 368-373.

Dhama K, Chakraborty S, Barathidasan R, Tiwari R, Rajagunalan S and Singh SD (2013). *Escherichia coli*, an economically important avian pathogen, its disease manifestations, diagnosis and control, and public health significance: a review. *Research Opinions in Animal and Veterinary Sciences* 3 (6): 179-194.

El-Sukhon SN, Musa A and Al-Attar M (2002). Studies on the bacterial etiology of airsacculitis of broilers in northern and middle Jordan with special reference to *Escherichia coli*, *Ornithobacterium rhinotracheale* and *Bordetella avium*. *Avian Diseases* 46: 605-612.

Ghosh RC, Hirpurkar SD and Suryawanshi PR (2006). Concurrent colibacillosis and infectious bursal disease in broiler chicks. *Indian Veterinary Journal* 83: 1019-1020.

Gofur MR, Khan MZI, Karim MR and Islam MN (2008). Histomorphology and histochemistry of testis of indigenous bull (*Bos indicus*). *Bangladesh Journal of Veterinary Medicine* 6: 67-74.

Haider MG, Hossain MG, Chowdhury EH, Hossain MS, Das PM, Hossain MM (2003). Prevalence of enteric bacterial diseases in poultry of some selected poultry rearing units of SLDS-2 area: Isolation, identification and pathology of the identified diseases. *Progressive Agriculture* 14: 51-79.

Hashem MA, Islam MS, Alam MM, Kabir MH, Mahmud MS (2017) Prevalence and pathological investigations of avian colibacillosis in commercial broiler at Chittagong district in Bangladesh. *Asian-Australian Journal of Bioscience and Biotechnology* 2(2): 173-180.

Hossain MK, Ahmed M, Kabir H, Sarker MRR, Jalil MA and Adhikary GN (2004). Poultry diseases at Rajshahi in Bangladesh. *Journal of Animal and Veterinary Advances* 3: 657-659.

Islam MR, Das BC, Hossain KH, Lucky NS and Mostafa MG (2003). A study on the occurrence of poultry disease in Sylhet Region of Bangladesh. *International Journal of Poultry Sciences* 2: 354-356.

Kabir SML (2010). Avian Colibacillosis and Salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. *International Journal of Environmental Research and Public Health* 7: 89-114.

Khaton R, Haider MG, Paul PK, Das PM and Hossain MM (2008). Colibacillosis in commercial chickens in Bangladesh. *The Bangladesh Veterinarian* 25(1): 17-24.

Lambie N, Ngelcka M, Brown G and Ryan J (2000). Retrospective study on *E. coli* infections in broilers subjected to post mortem examination and antibiotic resistance of isolates in Trinidad. *Avian Diseases* 44: 155-160.

McMullin PF (2020). Diseases of poultry. In: Swayne DE, Boulianne M, Logue CM, McDougald LR, Nair V, Suarez DL, Wit S, Grimes T, Johnson D, Kromm M, Prajtno TY, Rubinoff I and Zavala G (Eds.). *Pox. Diseases of Poultry* 14<sup>th</sup> Edition., Hoboken, NJ: John Wiley & Sons, pp. 364-381.

Mishra A, Sharda R, Chhabra D and Moghe MN (2002). *E. coli* isolated from domestic poultry farm. *Indian Journal of Animal Science* 72: 727-729.

Nawaz S, Wang Z, Zhang Y, Jia Y, Jiang W, Chen Z, Yin H, Huang C and Han X (2024). Avian pathogenic *Escherichia coli* (APEC): current insights and future challenges. *Poultry Science* 103(12): 104359.

Rahman MA, Samad MA, Rahman MB and Kabir SMI (2004). Bacteriological pathological studies on salmonellosis, colibacillosis and pasteurellosis in natural and experimental infections in chickens. *Bangladesh Journal of Veterinary Medicine* 2: 1-8.

Sharada R, Krishnappa G, Raghavan R, Sreevinas G and Upandra HA (1999). Isolation and serotyping of *E. coli* from different pathological conditions in poultry. *Indian Journal of Poultry Science* 34: 366-369.

Talha AFSM, Hossain MM, Chowdhury EH, Bari ASM, Islam MR and Das PM (2001). Poultry diseases occurring in Mymensingh district of Bangladesh. *Bangladesh Veterinary Journal* 18: 20-23.

Talukdar ML, Zuhra FT, Islam KME and Ahmed MS (2017). Prevalence of infectious diseases in Sonali chickens at Bogra Sadar Upazila, Bangladesh. *Journal of Advanced Veterinary and Animal Research* 4(1): 39-44.

Tonu NS, Sufian MA, Sarker S, Kamal MM, Rahman MH and Hossain MM (2011). Pathological study on colibacillosis in chickens and detection of *Escherichia coli* by PCR. *Bangladesh Journal of Veterinary Medicine* 9(1): 17-25.

Wang D, Ding X and Rather PN (2001). Indole can act as an extracellular signal in *Escherichia coli*. *Journal of Bacteriology* 183(14): 4210-4216.

