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Abstract 

 

In the early stage of drug development process, it is urgent to judge the toxicity effect of some common 
chemical compounds (CCs) that is not yet well investigated. Biomarker genes (BGs) and dose of CCs 
can help to draw a deduction about a drug for safety assessment. Classical toxicology method uses 
large number of samples to extract clinical results which is both time consuming and costly.  However, 
conventional molecular methods can perform to identify only BGs and fail to detect source factor 
influencing these BGs. The aim of this study is to propose a suitable algorithm that can identify more 
promising and essential toxicity biomarkers related to some common CCs for safety assessment of new 
drugs. The glutathione is an effective metabolite of detoxification process in liver. Glutathione depletion 
analysis is one of the major key research areas in drug development pipeline. In this paper, we studied 
glutathione depletion analysis of some reported CCs (acetaminophen, methapyrilene and nitrofurazone). 
We develop an algorithm combining ANOVA and principal component analysis (PCA) using visualization 
technique to find biomarker genes and associated glutathione depleting CCs and their corresponding 
doses. There are numerous numbers of genes in the glutathione metabolism pathway regulated as 
differentially expressed (DE) genes due to the toxic effect of these CCs and proposed algorithm identify 
only five genes (Mgst2, Gclc, G6pd, Gsr and Srm) that are also foremost genes in the glutathione 
metabolism pathway. Proposed algorithm states that high dose of all the CCs are responsible for 
glutathione depletion, nevertheless middle dose of acetaminophen and nitrofurazone also cause 
glutathione depletion. The proposed algorithm has an additional benefit over the conventional method to 
discover new chemical entities toxicity. 

Key words: ANOVA, biomarker, glutathione, microarray, PCA, toxicogenomics  

Introduction 
 

The chemicals whose have an adverse effect in human body are regarded as toxic agent but this adverse 
effects are extensively dependent on the chemicals exposure level. For a pharmaceutical drugs, the 
effectiveness and the toxicity depends on it dose level, overdose may cause toxicity. Moreover, sometimes 
the dose makes the thing toxic according to an old cliché “the dose makes the poison”. These toxic 
compounds are disposed through four stages like absorption, distribution, metabolism and excretion in a 
biological system (Davis and Riley et al. 2004, Ekins et al. 2005). The liver is the largest internal and main 
organ in the human body for metabolism and detoxification of drugs and environmental chemicals (Klaassen 
et al. 2007). Hepatotoxicity is one of the major causes for withdrawals of some CCs from the market. 
However, most of the preclinical studies are designed based on liver organ. Classical toxicological research 
depends on the animal testing to determine the hazard of toxic chemical compound to humans based on 
well-established cytological, physiologic, metabolic, and morphologic endpoints (Suter et al. 2004) and 
require a large number of animals and huge time for drawing statistically significant conclusions to assess 
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the potential of tumarogenicity in animals and relevant risk in humans (Ulrich and Friend 2002, Waters and 
Fostel 2004). Therefore, the toxicological testing is of high cost in terms of time, labor, compound synthesis, 
and animals used. On the other side, toxicogenomics that has attracted widespread attention as an 
alternative means to study the underlying molecular mechanisms of toxicity and address challenges that are 
difficult to overcome by conventional toxicology methods (Nuwaysir et al. 1999) as well as gene expression 
(GE) analysis of animals’ target organs after drug administration can help assessing potential toxicity before 
phenotypic appearance through the use of BGs (Fielden et al. 2007, Uehara et al. 2008). That’s why 
toxicogenomics find its great application in the case of drug development and has become a powerful tool for 
revealing mechanisms underlying toxicological endpoints and a useful approach for the early detection of 
potential chemical toxicity (Heinloth et al. 2004, Irwin et al. 2004, Battershill et al. 2005, Searfoss et al. 2005, 
Kiyosawa et al. 2009). 
The Japanese Toxicogenomics Project (TGP) systematically collected chemically-induced GE data from 
2002 to 2010 and its first outcome was open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation 
Systems (TG-GATEs). In this study, we use TG-GATEs database that stores GE profiles and traditional 
toxicological data derived from rats (liver, kidney, and primary hepatocytes) and human (primary 
hepatocytes) cells after administrating 170 compounds at the combination of multiple dose and time levels 
(Igarashi et al. 2015).  
In the liver, detoxification process is always continuing and glutathione plays the major role in this process by 
conjugating target toxic compounds and exports the conjugated compounds into bile ducts. To analyze drug 
induced glutathione depletion from TG-GATEs database, we discover common DE genes for some drugs 
that are affected by different factors likewise, doses and measurement time levels or combinations thereof. 
The ultimate goal of toxicogenomics study is to identify genes that are differentially expressed in the 
conditions (CCs-dose-time) being studied. Comparison statistics, for instance, fold-change, Mann–Whitney U 
test and t-test are frequently used to discover DE genes in toxicogenomics (Nyström-Persson et al. 2013). 
Fold-change is the log ratio between two conditions and a threshold value have been used to choose two 
fold difference whereas Mann–Whitney U test is a nonparametric test also produce same result as like as t-
test, a statistical test in normal conditions. The result obtained from fold-change is not so suitable since it 
does not give any level of confidence to define a DE gene and it’s identify wrong gene in case of low intensity 
with high variance (Newton et al. 2001, Rocke et al. 2001). In toxicogenomic experiment, we have different 
factors like dose and measurement time points and t-test is compare the expression level of control dose 
(samples) with the others dose levels by pooling all samples or make many comparisons, one for each 
different pair of conditions. For toxicogenomics data, t-test is not an efficient approach, because it does not 
fully utilize all of the information existing in the data and it produces low power because of small sample in 
each condition (Cui et al. 2003). ANOVA technique considers the variability of the expression levels in 
different factors. If the variability is present in the expression levels of a gene by the combined effect of dose 
and time, this indicates that the gene is differentially expressed (Pavlidis et al. 2003). In this study, we 
consider two-way ANOVA technique that provide interaction effect between dose and time levels of a 
compound on the expression value of a gene, thereby, the main effects of dose and time levels on that gene 
are no longer straight forward to interpret (Sahai et al. 2000). PCA can be used to separate dose-time 
depended cluster of treated CCs group from the control group (Hirode et al. 2008). In this study, combining 
two-way ANOVA and data visualization based on PCA result, data visualization based on PCA result using 
common DE genes enables one to identify a group of BGs and to select risk factor (dose of CCs in some 
toxic mechanisms). Using proposed algorithm, we can easily identify BGs and associated source factors. 
However, proposed algorithm result permit the histopathological results obtained from the same sample 
conditions and it is also possible to use proposed algorithm to discover new chemical entities toxicity which is 
describe in detail in conclusion section.      
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Materials and Methods  
Computational approach 

Proposed computational approach to analyses toxicogenomics experiment data are delineated in Fig. 1.  
Microarray experimental data contain thousands of variables, (i.e. genes) and only relatively few samples, so 
it is necessary to reduce the number of genes considered for further analysis. This can be done by restricting 
on a group of genes or by selecting a pathway. However, some compound are influencing a given pathway 
or biological process of particular interest. For some given compounds, we can reduce the data dimension by 
selecting a set of genes involving those compound induced pathway. Suppose, we have c compounds data 

1 2, , , cD D D each have same variables or genes (N) and either same or different number of samples 
depending on dose-time selections of compound. Let us consider the sample size of each compounds are 
same (m), it seems a balance condition. Again, consider there are n genes are involved in a given pathway. 
To analyze this pathway, we diminish variables size N to n (after removing others gene from variable list that 
are not involved in this pathway). 

Identification of DE genes 

In this study, to identify DE genes for toxicity prediction, we have used two-way ANOVA model. Let us 
consider ijkY is a random variable of GE and ijky is the observed GE value of ijkY at thi replication of the jth 

dose of a chemical and kth measurement time level. In two-way ANOVA models, all these variables as 
varying independently and normally around a mean expression jkµ  with a constant variance 2σ . The two-
way ANOVA is therefore given in equation (1). 

ijk jk ijkY µ ε= +  (1) 

The mean expression value, ( )jk j k jkµ µ α β αβ= + + + ; where, µ is the grand mean, jα is the thj  

dose level effect, kβ is the thk  time level effect, ( ) jkαβ  
is the interaction effect of the dose and thk  

measurement time level and ijkε  
is the random error.  Now the equation (1) can be written in a vector for a 

GE measure as   

( )ijk j k jk ijkY µ α β αβ ε= + + + +  (2) 

Where, 1,2, , ; 1, 2, , ; 1, 2, , .i n j a k b= = =    The main objective of the above ANOVA model is to 
test whether all the main effects ( jα ) of the dose levels, the main effects ( kβ ) of time levels or the 
interaction effects ( ) jkαβ  of dose and time levels are statistically significant. Under null hypothesis, for 
testing the mentioned statement the F statistic are used. On the basis of this statistic, if the null hypothesis 
becomes rejected (i.e., the main or the interaction effects are significantly different).  For each CCs, every 
gene are tested weather  the expression level is changed by the effect of dose and time levels of given CCs. 
DE genes for each CCs are selected by following the condition of interaction effect p-value <0.05. 

https://en.wikipedia.org/wiki/Independence_(probability_theory)
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Identification of BGs and associated source factor 

After identifying significant genes from each compound, we extracted common significant genes cn from the 
gene list of all CCs which shows much alteration in their expression due to exposure chemicals. Now, apply 
PCA on the reduce data matrix 

sD  with dimensions cn m× . PCA is a promising multivariate technique 
which is widely used for dimension reduction but in this paper, we used PCA as a classifier or to measure the 
associations between genes and sample conditions (SCs) i.e., compound specific dose (-time). Combining 
data visualization and post-hoc testing, multiple comparison tests enables one to differentiate SCs and to find 
SCs considering expression similarities having highest mean. PCA biplot on significant GE data can be used 

Fig. 1. Overview of the proposed Algorithm. 
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to extract the loading sources of variation from toxicogenomics data, to visualize associations between genes 
and SCs and select BGs from this relationship. We restricts PCA to the first principal component (PC) for 
selecting probable toxic CCs dose by setting threshold value as smallest absolute loading according to the 
PC1. It is also possible to make deductions about the groups or similarities of Compound as well as dose by 
perceiving the scatterings on biplot, similar compound induces GE value might scattered together in the 
biplot. It is well known that high dose of CCs are more toxic than other dose. Therefore, genes which are 
projected roughly in the high dose level of CCs are reported as key genes or BGs for toxicogenomic 
discovery. A gene is DE when it expression patterns shows significant differences in different dose, time or 
dose-time level. For a specific gene, some doses levels have similar as like control dose and some have 
different expression value. In the expression level of BGs, SCs are suspected as a toxic compound-dose      
(-times) whose have high mean expression value. Applying multiple comparisons (Tukey-HSD) post-hoc 
testing with the condition adjustment of p-value (Holm’s), p-adj. <0.05 to the BGs, we identify putative SCs. 
Finally, SCs obtained from PCA and post-hoc test are matched and matching SCs are considered as source 
factor of these DE genes or the desirable compound-dose-time for toxicogenomics discovery. Results from 
proposed method are tested by the histopathological results to measure the performance of the proposed 
method. 

Source of data 

Chemically induced GE data or microarray data refers to toxicogenomics data. According to Nyström-
Persson et al. (2013) acetaminophen, methapyrilene and nitrofurazone are the glutathione (a major 
metabolite in detoxification process) depleting compounds. CEL files for microarray GE data after 
administrating these three CCs were downloaded from TG-GATEs (http://toxico.nibiohn.go.jp/). TGP has 
been taken the scheme collecting high dimensional toxicogenomic data systematically since 2002 as a joint 
government-privet sector project (Uehara et al. 2010). In vivo  and in vitro are the two main types of data 
have produced by the  TGP, the in vivo data, which was collected from Rattus Norvegicus at four time points 
(3, 6, 9 and 24 hrs) for each of four dose levels (control, low, middle, high) from two organs (liver, kidney). In 
this study, we consider Rattus Norvegicus’s in vivo liver GE data of chemicals acetaminophen, methapyrilene 
and nitrofurazone. 

Pre-processing and normalization of CEL file 

CEL files are mainly image files, prior to computational analysis, it is necessary to quantify image file to 
expression values. Using the Bioconductor Affy package for R, raw files were pre-processed and mas5 
function is used for normalization the GE values.  

Results and Discussion 
Glutathione depletion analysis 
In this study, we have considered three reported glutathione depleting compounds acetaminophen, 
methapyrilene and nitrofurazone and their toxicity effect under different conditions (dose and time levels) 
were studied on the 42 probes that are belonging to the glutathione metabolism pathway. Examining p-
values in the interaction effects between dose and time level, 15, 14 and 17 DE probes out of 42 probes 
were found for acetaminophen, methapyrilene and nitrofurazone respectively. The p-values of common DE 
genes in compounds are presented in Table 1. Based on gene ontology, the content of gene related to 
Glutathione metabolism, glutathione biosynthetic process, glutathione binding, aging, response to cadmium 
ion, glutathione metabolic process, cytosol were significantly high (Table 2). This feature might reveal that 
the GE changes in glutathione metabolism strongly associated with glutathione depletion or conjugation.     
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Now, we compute PCA on the reduced data matrix based on these seven genes and same SCs. Unless, 
PCA is generally applied for dimension reduction but in this study, we use PCA for association study. 
However, the first two components were highly significant contain almost 80% explained variance. The biplot 
with significant common genes in CCs can be used to correlate SCs and genes. Fig. 2 shows a biplot of SCs 
and common significant genes with normal ellipse for both CCs and doses. As portrayed in Fig. 2A, 
acetaminophen and methapyrilene nearly similar compound whereas nitrofurazone is totally different and it’s 
imitate that the mechanism of nitrofurazone may be different from acetaminophen and methapyrilene. From 
Fig. 2B, we observed that the variation in the data is increases by the increment of doses but doses level 
don’t have any separate cluster. We also observed that most of the low dose data points are scattered with 
control dose data point and increasing dose data points are scattered far away (especially high dose levels). 
The biplot enables the association of common DE genes with SCs. The genes, Gsr, Mgst2, Gclc, Srm and 
G6pd loadings directed according to the first two PCs towards high dose levels of CCs (Fig. 2).  

Table 1. Common DE genes for all the CCs in glutathione metabolism pathway. 

Gene ID Gene name Acetaminophen Methapyrilene Nitrofurazone 

Gsr Glutathione reductase 1.91E-07 (4.60E-05) 1.00E-06 (2.30E-05) 8.06E-11 (2.72E-07) 

Mgst2 Microsomal glutathione S-transferase 2 1.00E-06 (5.70E-05) 2.00E-06 (0.014261) 3.67E-10 (1.47E-07) 

Gclc Glutamate-cysteine ligase - catalytic subunit 2.50E-05 (0.007903) 1.90E-05 (0.008478) 2.17E-08 (5.00E-06) 

Srm Spermidine synthase-like 0.000408 (0.017384) 4.20E-05 (0.008105) 1.60E-05 (0.993068) 

G6pd Glucose-6-phosphate dehydrogenase 0.001366 (0.026589) 0.000235 (0.22635) 0.000463 (0.700015) 

Gss Glutathione synthetase 0.009570 (0.032616) 0.013921 (0.200432) 0.000617 (0.047296) 

Gsta2 Glutathione S-transferase alpha 2 0.017522 (0.006135) 0.023948 (0.341182) 0.001859 (0.906843) 

 P-values obtained from t-test are presented in bracket. 

Fig. 2. PCA for common DE genes of all CCs. Biplot of chemical-dose-time data points and common DE 
genes loading to the first two principal components of the PCA. Different color represents different group. 
Classification using common DE genes for CCs ‘A’ (left) and Dose of all chemicals ‘B’ (right).  
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The vector of these five genes represent the loadings indicate that they have strong association with the high 
dose levels (Fig. 2). Therefore, by the proposed algorithm, genes Gsr (glutathione reductase), Mgst2 
(microsomal glutathione S-transferase 2), Gclc (glutamate-cysteine ligase), Srm (spermidine synthase) and 
G6pd (glucose-6-phosphate dehydrogenase) are the biomarker genes for this study as well as glutathione 
depletion analysis. Gclc is known to accelerate glutathione synthesis and Mgst2 is glutathione-S-transferase, 
which is the main enzyme for detoxification of toxic compounds by the conjugation reaction. Gsr, G6pd and 
Srm is a central enzyme of cellular antioxidant defense and reduce oxidized glutathione disulfide (GSSG) to 
the sulfhydryl form glutathione. The loadings or the vectors indicate that these genes are highly correlated to 
each other and have strong association with toxic dose. To identify suspected toxic dose of CCs, we setup a 
threshold value for PC1 score by considering smallest length of these five genes vector. In this study, we 
chose the threshold value for PC1 score is 2.1 (Fig. 2). 

Table 2. Go analysis of identified common seven DE genes. 
Term Count Percent P-value 

Glutathione metabolism 6 85.7 1.9E-10 

Glutathione biosynthetic process 3 42.9 2.4E-4 

Glutathione binding 3 42.9 2.5E-4 

Aging 4 57.1 2.3E-3 

Response to cadmium ion 3 42.9 1.8E-3 

Glutathione metabolic process 3 42.9 1.8E-3 

Cytosol 5 71.4 4.0E-3 

Fig. 3. Score plot for PC1. For each CCs, each data point is duplicated by the combination of different color 
and shape as shown bottom panel. 
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Only 24 h time point of high and middle doses in acetaminophen, 9 h and 24 h time points of high dose in 
methapyrilene, and 6h, 9h and 24 h of high dose and only 9h and 24 h of middle dose in nitrofurazone are 
exceeds the threshold value in PC1 score which data points might be responsible for glutathione depletion 
(Fig. 3). To validate PCA result, we now apply post-hoc testing criterion by the proposed method using these 
five significant genes. Applying post-hoc test, we found 9 h of low and middle doses, 24 h of high and middle 
doses in acetaminophen, 6 h, 9 h and 24 h time points of high dose in methapyrilene, and both 9 h and 24 h 
of high and middle doses in nitrofurazone have comparatively high and similar expression patterns (a boxplot 
for the expression patterns of gene Mgst2 from all CCs also shown in Fig. 4). 
Table 3. Biomarker genes for all the CCs in glutathione metabolism pathway. 

CCs Dose Time Score Mgst2 Gclc G6pd Gsr Srm 

Nitrofurazone High 24h 5.70 13.74 13.05 12.50 11.81 11.24 

Acetaminophen High 24h 4.73 13.51 13.36 12.47 11.16 10.9 

Acetaminophen Middle 24h 4.23 13.64 13.07 12.04 11.06 10.6 

Nitrofurazone High 9h 3.86 -- 13.04 11.54 -- 10.91 

Nitrofurazone Middle 9h 3.38 -- 13.16 -- -- -- 

Methapyrilene High 9h 2.56 13.05 13.38 11.36 10.27 10.81 

Methapyrilene High 24h 2.31 13.21 -- 11.76 10.26 10.21 

Nitrofurazone Middle 24h 2.05 13.36 -- -- -- -- 

Acetaminophen Middle 9h 1.82 -- 12.82 -- -- -- 

Methapyrilene High 6h 1.70 -- 13.10 10.81 10.16 10.71 

-- = not significant (comparatively low expression value than the source factor). Score represent the PC1 
score and the value corresponding genes are the mean expression value. 

Fig. 4. Boxplot in different SCs for Mgst2 gene. Lettering in the top panel represent similarity among SCs. 
Gene expression patterns for only gene mgst2 in different SCs of  acetaminophen ‘A’, methapyrilene ‘B’ and 
nitrofurazone ‘C’ are displayed. 
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After matching both results from PCA and post-hoc test we found, only high dose of methapyrilene and 
middle and high doses of acetaminophen and nitrofurazone, which are considered as the responsible source 
factor for glutathione depletion. The pathological result of these three CCs permits the result obtained from 
proposed algorithm (http:/toxico.nibio.go.jp/). We can also rank CCs with their dose levels by PC1 score 
which may reflect the effectiveness of glutathione depletion. The rank score and significant mean expression 
of biomarker genes are presented in Table 3. 

Conclusion 

Biomarker discovery in toxicogenomics research is crucial for assessing adverse effect of chemical in the 
early stage. Large scale chemical-induced GE data help to study adverse effect of chemicals. Basically, GE 
changes imitate the pathological condition changes. Therefore, to measure toxic potential of unknown drug 
by measuring GE fingerprint with some known drug give additional benefits which save both cost and time. 
From the literature it is known that the compounds, acetaminophen, methapyrilene and nitrofurazone are 
glutathione depleting compound and proposed method identify corresponding dose levels which caused 
glutathione depletion. Proposed algorithm also identifies five BGs (Mgst2, Gclc, G6pd, Gsr and Srm) that’s 
effectively control glutathione depletion. In mechanistic point of view by the proposed method, nitrofurazone 
shows slightly different mechanism then the others CCs. It would be possible to identify new chemical toxicity 
(for instance, glutathione depletion) by comparing its expression pattern of BGs with the known CCs. 
Therefore, further study is obviously needed to rally and simplify the candidacy of BGs suggested in the 
work. 
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