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Abstract 
 

Simple interval mapping (SIM) is one of the most important techniques for the identification of 
quantitative trait locus (QTL). Most of the approaches of SIM are very sensitive to phenotypic outliers 
and produce misleading results. There is a robust approach of SIM only for F2 population. However, 
there is no robust SIM method for Backcross population. The objective was to develop a new approach 
of SIM with Backcross population which is robust against phenotypic outliers and performs almost the 
same as existing classical methods in absence of outliers. Maximum likelihood (ML) and linear 
regression (LR) based approaches of SIM are not robust against phenotypic outliers. In this research, 
we have developed a robust regression based SIM approach by maximizing β-likelihood function for 
Backcross population. The proposed method reduces to the LR-based SIM method when β = 0. To 
measure the performance of the proposed method in comparison of ML and LR based SIM with 
backcross population; we have generated phenotypic and genotypic data for Backcross population using 
simulation technique. LOD score profile plot shows that the highest peaks of LOD scores occur in the 
true QTL positions of the true chromosomes at true markers by all three methods for the 
uncontaminated dataset. However, in presence of outliers, only the proposed method gives the highest 
LOD score peaks at the true QTL positions on the true chromosomes. The simulation results showed 
that the proposed method improves performance over the existing SIM methods in presence of 
phenotypic contaminations.  

Key words: Backcross population, beta-LRT criterion, maximum beta-likelihood estimation, QTL analysis, robustness, 
robust linear regression  

Introduction 
 

The rapid advancement in molecular biology has increased the availability of fine scale genetic markers 
which facilitate the wide use of QTL analysis in the genetic study of quantitative traits in bioinformatics. Liu 
(1997) and Wu et al. (2007) discussed various techniques of QTL mapping in their texts. Thoday (1961) first 
proposed the idea of using two markers to bracket a region for testing QTLs. Soller et al. (1976) examined 
the power of experiments at detecting linkage between a quantitative locus and a marker locus. Similar to 
Thoday’s (1961), but much improved, method called interval mapping (IM) approach was proposed by 
Lander and Botstein (1989)  which is based on linkage relationships between a QTL and flanking markers. 
Maximum likelihood (ML) based IM (Lander and Botstein 1989) and regression based IM (Haley and Knott 
1992) are two most popular and widely used interval mapping approaches. 

In practice, QTL effects are treated as either fixed or random (Xu 1998). In fixed effects QTL model, allelic 
substitution effects are usually estimated and tested, and QTL variance is calculated from estimated allelic 
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effects. In random effects QTL model, the QTL effects and QTL variance are directly estimated and tested. 
Since the conditional expectations of the QTL genotype given the flanking marker genotype are unknown in 
MLE based IM model (Lander and Botstein 1989), this QTL effect model can be treated as a random effects 
model (REM). On the other hands, in the HK regression based IM model the conditional expectation of the 
QTL genotype given the flanking marker genotype is considered as fixed (Kao 2000) and this model can be 
treated as a fixed effect model (FEM). 

The existing interval mapping based on REM (Lander and Botstein 1989) and FEM (Haley and Knott 1992) 
are two most popular and widely used methods for QTL analysis. But these methods are not robust against 
phenotypic contaminations. There is a regression based robust approach of SIM for QTL mapping only with 
F2 population (Alam et al. 2015). In this work, we propose a robust method with FEM to perform QTL 
analysis for Backcross population. Also we have investigated the performance of the proposed method with 
the existing random effect QTL model and fixed effect QTL model for Backcross population by simulation 
study. 

Materials and Methods 

Linear regression based SIM approach for QTL detection with backcross population 
Let us consider no epistatis between two QTLs, no interference in crossing over, and only one QTL in the 
testing interval. The fixed effect model for Backcross population, for testing a QTL within a marker interval, is 
define as     
         yj = µ + axj|i  + uj, i = 1, 2 and j = 1, 2, …, n                                                                (1) 

where yj  is the phenotypic value of the j-th individual, μ is the general mean effect, xj|i = pj|1, a is the QTL 
additive effect and uj~NID(0,σ 2) is a random error. Here, xj|i is the conditional probability for QTL 
genotypes given the flanking marker genotypes. Since conditional expectation is equivalent to conditional 
probabilities of QTL genotypes (Kao 2000), xj|i is fixed for QTL genotypes given flanking marker genotypes. 
Since xj|i is fixed, so this model is called fixed effect model. 
The conditional probabilities for QTL genotypes QQ and Qq given the flanking marker genotypes are 
denoted by pj|1 and pj|2, respectively. The conditional probabilities pj|1 and pj|2 are shown in Table 1 for 
Backcross population. In Table 1, p is defined as p = rMQ/rMN where rMQ is the recombination fraction 
between the left marker M and the putative QTL and rMN is the recombination fraction between two flanking 
markers M and N. The possibility of a double recombination event in the interval is ignored. 

Table 1. Conditional Probabilities of a putative QTL genotype given the flanking marker genotypes for a 
backcross population. 

Marker genotypes Expected frequency QTL genotypes 

  QQ (pj|1) Qq (pj|2) 

MN/MN (1−r)/2 1 0 

MN/Mn r/2 (1−p) p 

MN/mN r/2 p (1−p) 

MN/mn (1−r)/2 0 1 
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To investigate the existence of a QTL at a given position within a marker interval, we want to test the 
hypothesis H0: a = 0 (i.e., there is no QTL at a given position) versus H1:  H0 is not true. Under the 
normality assumption of error, the probability density function of the trait value (y) within each QTL genotype 
class is N (µ + axj|i, σ 2). 

Then the likelihood function for the parameters θ = (µ, a, σ 2) can be written as follows 
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To test H0 against H1, the likelihood ratio test (LRT) statistic is defined as 
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where, Θ0 and Θ are the restricted (H0) and unrestricted (H1) parameter spaces.  

The threshold value to reject the null hypothesis cannot be simply chosen from a chi-square distribution 
because of the violation of regularity conditions of asymptotic theory under H0. The number and size of 
intervals should be considered in determining the threshold value. Since multiple tests are performed in 
mapping, the hypotheses are usually tested at every position of an interval and for all intervals of the genome 
to produce a continuous LRT statistic profile. At every position, the position parameter p is predetermined 
and only μ, a and σ 2 are involved in estimation and testing. If the tests are significant in a chromosomal 
region, the position with the largest LRT statistic is inferred as the estimate of the QTL position and the 
maximum likelihood estimates (MLEs) at this position are the estimates of μ, a and σ 2 obtained by iterative 
way. 

The MLEs of the parameters µ, a and σ 2 are as follows 
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Obviously these ML estimates of μ, a and σ 2 are very much sensitive to outliers. Therefore, regression 
analysis by MLE produces misleading results in presence of contaminated data. 
 

Robust linear regression based SIM for QTL detection with backcross population  

The β-likelihood function (for details about β-likelihood (Mollah et al. 2007)) for θ is given by 
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The β-likelihood equation is obtained as 
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where x0j= 1 for all j= 1, 2, …, n and 
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function w (yj|θ, xj|i) is the weight function which produces almost zero weight for the outlying observations. 

Solving equation (6), we get the proposed estimates of the parameters θ as 
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To test H0: a = 0 against H1:  H0 is not true, the proposed test criterion is defined as 
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By permutation test, we compute the p-value for testing H0 vs H1 using the following formula 
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where Np is the number of permutation under H0 and βλ̂  is the estimate of βλ  for the original dataset and 

)(ˆ kβλ  is the estimate of βλ  
for the k-th permutation of the values of the response variable. Note that, for 

β→0, βλ̂  reduces to the approximate 2χ  distribution. 

Simulated data 
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To measure the performance of the proposed method in comparison of the fixed effect and random effect 
models for QTL mapping with Backcross population, we have generated phenotypic and genotypic data for 
Backcross population using simulation technique. We have considered two unlinked QTLs, total 10 
chromosomes and 11 equally spaced markers in each of the 10 chromosomes, where any two successive 
marker interval size is 5 cM. The true QTL position is located in chromosome 2, 3and 5 at marker 5 (locus 
position 20 cM). The true values for the parameters in the fixed effect model are assumed as µ = 0.5, a = 
0.8, d = 0.4 and σ 2 = 0.5. We have generated 250 trait values with heritability 20.02 =h  which means 
that 20% of the trait variation is controlled by QTL and the remaining 80% is subject to the environmental 
effects (random error). To investigate the robustness of the proposed method in a comparison of the REM 
and FEM methods, we contaminated 12% trait values in this dataset by outliers. To perform the simulation 
study we have used R/qtl software (Broman et al. 2003, homepage: http://www.rqtl.org/). 

Results and Discussion 
Table 2 shows QTL positions (i.e., chromosome, marker and locus position) identified by REM, FEM and the 
proposed method. Fig. 1a and 1b are representing the scatter plots of 250 trait values in presence and 
absence of outliers, respectively. Then we computed LOD scores based on REM, FEM and the proposed 
methods for both types of data sets. Fig. 1c and 1d are showing the LOD scores profile plots for the 
uncontaminated and contaminated datasets, respectively. In the LOD scores profile plots the dotted, two 
dash and solid lines represent the LOD scores at every 1cM  position in the chromosomes for REM, FEM 
and the proposed method with  β = 0.2, respectively. 

It is seen that the highest LOD score peak occurs in the true QTL position of the true chromosome 2, 3 and 5 
at marker 5 (locus position 20 cM) by all three methods for the uncontaminated dataset. However, in 
presence of outliers, the highest LOD score peak occurs in the true QTL position by the proposed method 
only (Fig. 1d). 

Table 2. QTL positions identified by each method in absence and presence of outliers. 

Methods True QTL positions Identified QTL positions 
In absence of outliers In presence of outliers 

REM On chromosomes 2, 3 and 5 at 
marker 5 (locus position 20 cM) 
for each chromosome. 

On chromosomes 2, 3 and 5 at marker 
5 (locus position 20 cM) for each 
chromosome. 

REM fails identify any QTL on any 
chromosome. 

FEM On chromosomes 2, 3 and 5 at 
marker 5 (locus position 20 cM) 
for each chromosome. 

On chromosomes 2, 3 and 5 at marker 
5 (locus position 20 cM) for each 
chromosome. 

(i) On chromosome 1 at marker 10 (locus 
position 45 cM). 

(ii) On chromosome 2 at marker 5 (locus 
position 20 cM). 

(iii) On chromosome 5 at marker 1 (locus 
position 0 cM). 

(iv) On chromosome 10 at marker 11 
(locus position 50 cM) 

Proposed  

model 

On chromosomes 2, 3 and 5 at 
marker 5 (locus position 20 cM) 
for each chromosome. 

On chromosomes 2, 3 and 5 at marker 
5 (locus position 20 cM) for each 
chromosome. 

On chromosomes 2, 3 and 5 at marker 5 
(locus position 20 cM) for each 
chromosome. 
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From Table 2 and Fig. 1 we observe that all of the 3 methods (REM, FEM and proposed method) identify the 
true QTL positions correctly in absence of outliers. But in presence of outliers the REM fails to identify any 
significant QTL position and the FEM identify QTLs on chromosomes 1 at marker 10 (locus position 45 cM), 
on chromosome 2 at marker 5 (locus position 20 cM), on chromosome 5 at marker 1 (locus position 0 cM) 
and on chromosome 10 at marker 11 (locus position 50 cM). The positions on chromosome 5 at marker 1 
and on chromosome 10 at marker 11, identified by FEM, are not the true position of QTLs. However, in 
presence of outliers, the proposed method identify the QTLs on chromosome 2, 3 and 5 at marker 5 (locus 
position 20 cM) which are the true QTL positions. 

 

 
Fig. 1. Simulated phenotypic observations in (a) absence and (b) presence of 12% outliers, and LOD score 

profile in (c) absence and (d) in presence of 12% outliers. 

Hence, in presence of outliers, the classical methods of SIM (REM and FEM) fail to identify the all the true 
QTL positions whereas the proposed method successfully identifies all the true QTL positions. Also in 
absence of outliers the proposed method is working as the classical methods. 
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Conclusion 
Under this study we have proposed a new robust regression based simple interval mapping approach for 
QTL analysis by maximum β-likelihood estimation with Backcross population. The performance of the 
proposed method is controlled by the tuning parameter β. An appropriate value for the tuning parameter β 
can be selected by cross validation. The proposed method reduces to the traditional interval mapping 
approach when the tuning parameter β = 0. Simulation results show that the proposed method significantly 
improves the performance over the classical simple interval mapping approaches in presence of phenotypic 
outliers. Also in absence of outliers it shows similar performance to the classical methods of SIM. 
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