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Abstract 

 

High-throughput big dataset generated through next generation sequencing (NGS) of DNA samples 
helps identify key differences in the function and taxonomy between microbial communities as well as 
shed light on the diversity of microbes, cooperation and evolution in any particular ecosystem. During 
this study, three statistical techniques namely, Random Forest (RF), Multidimensional Scaling (MDS) 
and Linear Discriminant Analysis (LDA) approaches were employed for functional analysis of 212 
publicly available metagenomic datasets within and between 10 environments against 27 metabolic 
functions. RF generates the 8 most important metabolic variables along with MDS and LDA among 
which Photosynthesis has the highest score (70.20); Phages, prophages has the second highest score 
(61.31) and Membrane Transport was found to have the eighth highest score (45.29). The MDS plot was 
found useful to visualize the separation of the microbes from human or animal hosts from other samples 
along the first dimension and the separation of the aquatic and mat communities along the second 
dimension. LDA analyses compared the extent of the microbial samples into three broad groups: the 
human and animal associated samples, the microbial mats, and the aquatic samples. RF showed that 
phage activity is a major difference between host-associated microbial communities and free-living. The 
MDS and LDA techniques suggest that mat communities were unique from both the animal associated 
metagenomes and the aquatic samples with differences in the vitamin and cofactor metabolism. 
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Introduction 
Most life on this planet is microbes that help to maintain the ecological balance greatly through their direct 
and indirect interactions with biotic and abiotic components of the environment. Metagenomics has recently 
started contributing to reveal the actual scenario surrounding biodiversity of this microbial life. The technique 
comprises extracting and sequencing the DNA and RNA (metatranscriptomics) of microbial communities 
collected directly from any specific samples e.g., human or plant/animal-associated, environmental, 
industrial, food sources and then using high performance computational and statistical analysis to associate 
function to each sequence (Dinsdale et al. 2013). Due to rapid advancement in IT as well as the continued 
and dynamic development of faster next generation sequencing technologies with various platforms, it is now 
a powerful tool to sequence multiple samples with millions of short DNA fragments or reads in a single run. 
This ultimately facilitates studying the multiple microorganisms living in an environmental community without 
the need of isolating and culturing individual microbial species in a laboratory. It has been reported that more 
than 99% out of the millions of microbial species known to exist on earth cannot be cultured in a laboratory 
                                                           
∗Author for correspondence: akond25@yahoo.com 



 Akond et al. 46 

(Huson et al. 2009). However one can attempt to generate new NGS metagenomic dataset with a view to 
detect organisms of similar nature. Further annotation of a possible metagenome is conducted by comparing 
the sample DNA to the sequences that are available in various databases such as NCBI, SEED, MG-RAST, 
or COG (Aziz et al. 2008, Wooley et al. 2010). In most cases, the DNA sequences similar to each 
corresponding protein are identified; therefore a metagenome provides information on the taxonomic makeup 
and metabolic potential of a microbial community (Tringe et al. 2005). However, one should be aware that if 
new sequences are found, they might not give any hit which needs further analyses to claim novel and 
previously unknown organisms. 

Until now, most of the focus in metagenomics has been on single environments such as coral atolls (Wogley 
et al. 2007, Dinsdale et al.  2008), cow intestine (Brulc et al. 2009), ocean water (Angly et al. 2006), and 
microbialites (Breitbart et al. 2009). Early work compared extremely different environments like soil microbes 
compared to water microbes (Breitbart et al. 2009). More recently, the Human microbiome project 
(https://hmpdacc.org) has expanded our understanding of the microbes inhabiting our own bodies, 
comparing samples from the same site among and between individuals (Tunrbaugh et al. 2010). These 
studies reflect the dynamic and expanding field of metagenomics which has been shown elsewhere (Wogley 
et al. 2007). Metagenomics provides a complete analysis of the microbial activity in terms of how the 
microbial community or metabolic potentials (of a group of organism) vary between sampling locations or at 
different time points (Kurokawa et al. 2008). During this study attempt has been made to explore the abilities 
of metagenomics technique while analyzing the metabolic profile of microbial communities with eventual 
visualization of large amounts of multivariate data. 

Materials and Methods 

A total of 212 metagenome datasets were selected from publicly available database 
(https://dinsdalelab.sdsu.edu/metag.stats/).These were classified into 10 different environments depending 
on the descriptions provided by the researcher who submitted the data. The experiments were involved a 
number of NGS sequencing tools (Pyrosequencing and Roche Applied Sciences and 454 Life Sciences 
GS20 Platforms). 

Data source 
The metagenomes used in this article are freely available from the SEED platform and are being made 
accessible from CAMERA and the NCBI Short Read Archive. The NCBI genome project IDs used in this 
study are: 4441143- 44, 4441148, 4441152-53, 4441579 -86, 4441589, 4441591, 4441595-97, 4441600-02, 
4441605, 4441613, 4441618, 4441658-60, 4441662, 4440361-65, 4443688-89, 4443691, 4443693, 
4443702-04, 4443706-09, 4443711-15, 4443718-22, 4443724-25, 4441041, 4441056-57, 4441062, 
4441590, 4443679-81, 4443683-85, 4443687, 4440411, 4440413, 4440422, 4440440, 4441092, 4441093, 
4440453-54, 4440461-63, 4440595, 4440610-11, 4440613-16, 4440639-40, 4440823-26, 4440939, 
4440940-51, 4441050,4441599,4440324,4440329,4440416,4440419,4440425-26, 4440429-30, 4440433-
35, 4440437-38, 4440963-72, 4441051,4441055,4441057,4441125-30, 4441134-36, 4441139,4441145-47, 
4441149-51, 4441155-56, 4441570,4441573-78, 4441587-88,4441592,4441594,4441607,4441609-
11,4441614-16,4441661,4443740,4441121,4441133,4441139,4441167,4441593, 4441603-04, 4441617, 
4442642-43,4442643, 4442647-53, 4440037, 4440039-41, 4442583, 4443746-47, 4443749-
50,4443750,4443762,4441679-84, 4440463-64,4440464,4440056. These processed dataset were collected 
from the website of Dinsdale Lab., San Diego State University (https://dinsdalelab.sdsu.edu/metag.stats/) 
published in 2009. A number of statistical techniques were applied to these metagenomics data to explore 
the relevant phenomenon (Dinsdale et al. 2013). 

https://hmpdacc.org/
https://dinsdalelab.sdsu.edu/metag.stats/
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While various environmental measurements were collected at the time of metagenome sampling, the two 
data types: environmental and genomic have been analyzed simultaneously to provide direct evidence of 
how microbial communities differ across environmental gradients. Therefore our analyses used the percent 
of sequences in each metabolic or functional group as the datasets. The metabolic group is the response 
variables and the metagenomes were considered as the observations. The 27 functional hierarchies used in 
the analysis were: amino acids and derivatives; carbohydrates; cell division and cell cycle; cell wall and 
capsule; cofactors, vitamins, prosthetic groups and pigments; DNA metabolism; dormancy and sporulation; 
fatty acids, lipids, and isoprenoids; membrane transport; metabolism of aromatic compounds; miscellaneous; 
motility and chemotaxis; nitrogen metabolism; nucleosides and nucleotides; phages, prophages and 
transposable elements; phosphorus metabolism; photosynthesis; plasmids; potassium metabolism; protein 
metabolism; regulation and cell signaling; respiration; RNA metabolism; secondary metabolism; stress 
response; sulfur metabolism and virulence as classified by the concerned researchers (Aziz et al. 2008). 

Statistical and Graphical methods 
The data consisted of 10 different types (the environments), 27 response variables (the functional metabolic 
groups), and 212 observations (the metagenomes). we attempted to analyze multivariate data of the 
metagenomes using three different widely used statistical techniques namely random forests (RF), 
multidimensional scaling and linear discriminant analysis with a view to visualize the differences between and 
within environments and identify the key metabolic processes that might be crucial in the biological process. 

Random forests 
The random forest (Brieiman 2001) is a robust analytical tool. It is typically used to classify data either in 
supervised or unsupervised manner. It is a rapid classification technique that is less susceptible to over-fitting 
data and can be run in a bootstrap fashion (Dinsdale et al. 2013). In addition, the random forest provides a 
measure of the importance of each variable that can be used in other analyses. There are several 
approaches that work in conjunction with random forests to estimates the importance of variables in 
separating the data into groups. One uses the mean decrease in accuracy that a variable causes is 
determined during the OOB (out-of-bag) error calculation phase. The values of a particular variable are 
randomly permuted among the set of OOB metagenomes. Then the OOB error is computed again. The more 
the accuracy of the random forest decreases due to the permutation of values of this variable, the more 
important the variable is deemed. The mean decrease in Gini is a measure of how a variable contributes to 
the homogeneity of nodes and leaves in the Random Forest (Dinsdale et al. 2013). Let pmgi be the proportion 
of samples of group gi in node m. Let gc be the most plural group in node m. The Gini index of node mGm is 
defined in the following equation (i) 
 2
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The Gini index is a measure of the purity of the node, with smaller values indicating a purer node and thus a 
lesser likelihood of misclassification (Brieiman et al. 2001). Tree generating algorithms may use this index as 
their likelihood to pick which variable to split on. Each time a particular variable is used to split a node, the 
Gini indexes for the child nodes are calculated and compared to that of the original node. When node m is 
split into mr and ml, there is a probability 

rmp of samples going into the child node mr and 
lmp of going into 

ml. The decrease (Brieiman et al. 2001) in Gini is defined in Equation (2) 
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The calculated decrease is added to the mean decrease Gini for the splitting variable and normalized at the 
end. The greater the mean decrease Gini of a variable, the purer the nodes splitting. 

Each time a particular variable is used to split a node, the Gini coefficients for the child nodes are calculated 
and compared to that of the original node. The Gini coefficient is a measure of homogeneity from 0 
(homogenous) to 1 (heterogeneous). The decreases in Gini are summed for each variable and normalized at 
the end of the calculation. Variables that split nodes into nodes with higher purity have a higher decrease in 
Gini coefficient. 

Multidimensional scaling 
Multidimensional scaling is a data visualization technique that directly scales objects based on either 
similarity or dissimilarity matrices (Quinn and Keough 2002). MDS takes for its input an n × n dissimilarity 
matrix S for n metagenomes, constructed by some other statistical technique, such as random forest. Then 
the algorithm looks for an embedding of the data points into some lower dimensional space that preserves 
the dissimilarity distances as much as possible. This embedding can then be plotted to visualize the clusters 
and their distances. 

Linear discriminant analysis 
Linear discriminant analysis is a robust supervised statistical technique that aims to separate the data into 
groups based on hyper planes and describe the differences between groups by a linear classification 
criterion that identifies decision boundaries between groups (Fisher 1936). Let X be a dataset with defined 
groups 1.........n. For each group j, there exists a corresponding conditional distribution describe in equation 
(3).   

 ( ) ( ) jX j G i j f= −  -------------------- (3) 

Furthermore, let π j  represent the proportion of X that is contained in group j. To perform a LDA on X, we 
assume that each f j is normally distributed with an equal covariance matrix Σ, but with possibly different 
means µj.  Using maximum likelihood estimation theory, the linear discriminant functions can be derived in 
equation (4). 

 1 11( ) log( )
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These gj ’s from (4) are our classifying functions. Since for a point x we sought to maximize π j f j , our 
classification criterion is  

 assign x to group j if gj(x)>gk(x) for all k≠j 

With the classification criterion, decision boundaries between groups can be found. The decision boundaries 
are where the discriminant functions intersect. That is, the decision boundary between groups j and k is 
{x:gj(x) = gk(x)}. Therefore, the linear discriminant functions split the data space into regions. Each region 
corresponds to a specific group and the decision boundaries separate the regions. 

Statistical software 
The statistical and graphical methods discussed here are implemented using open source Statistical 
Language Programming R 3.2.2 (www.r-project.org).  

 

http://www.r-project.org/
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Results and Discussion 
RF generates a measure of the importance of each variable calculated by either the mean decrease in 
accuracy or the mean decrease in the Gini. These two values indicate which variables contributed the most 
to generating strong trees and can be used in MDS and LDA analyses. A subset of the data and variables is 
used to generate the trees and thus the approach can predict the environment to which a metagenome 
belongs. For both Accuracy and Gini in Fig.1 and Table 1, the photosynthesis got highest position with score 
70.20 and 16.07 respectively as well as the phage groups with second highest score 61.31 and 12.14 for 
both procedures were the most important response variables in separating the datasets, and in the both 
cases a break occurred between these two variables and the remaining variables, suggesting that just these 
two measures could be used to grossly classify the metagenomes. Eight variables with highest Mean 
Decrease Accuracy and Mean Decrease Gini score were thus chosen for the following MDS and LDA 
analyses. 

 
Fig. 1. Variable importance determined by random forest analysis using mean decrease in Accuracy and 
Gini. The plot outcome measures ranks of 26 the metabolic functions correspond to each symbols in both 
plots are placed according to their importance score in descending order. 
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Table 1. Variable importance measure with corresponding score. 

Metabolic variables Mean 
decrease in 

accuracy 

Mean decrease 
in Gini 

Metabolic variables Mean decrease in 
accuracy 

Mean decrease 
in Gini 

Amino acids and 
derivatives 

38.11 5.62 Phages, Prophages, 
and Transposable 

Elements 

61.31 12.14 

Carbohydrates 42.49 6.83 Phosphorus 
Metabolism 

41.59 6.58 

Cell Division and cell 
cycle 

30.49 4.55 Photosynthesis 70.20 16.07 

Cell wall and capsule 44.73 6.72 Plasmids 21.66 2.52 

Cofactors, vitamins, 
Prosthetic groups, and 
pigments 

45.49 9.2 Potassium Metabolism 34.54 5.40 

DNA metabolism 44.44 8.58 Protein Metabolism 47.65 6.97 

Dormancy and 
sporulation 

45.29 8.61 
Regulation and Cell 

Signaling 
35.28 5.41 

Fatty acids, lipids, and 
isoprenoids 

24.84 4.57 Respiration 29.81 4.75 

Membrane Transport 49.29 6.80 RNA Metabolism 29.82 4.52 

Metabolism of Aromatic 
Compounds 

40.68 7.34 Secondary Metabolism 34.40 5.76 

Motility and Chemotaxis 40.56 5.73 Stress Response 45.79 7.60 

Nitrogen Metabolism 45.68 6.76 Sulfur Metabolism 38.76 5.61 

Nucleosides and 
Nucleotides 

35.08 5.19 Virulence 39.11 6.05 

MDS projects the proximity measures of the metagenomes as determined by RF to a lower-dimensional 
space (e.g., 2-dimensional space for plotting on xy-axis). For the RF, the similarity was measured as the 
number of times two metagenomes appeared on the same leaf in the trees (proximity), and is represented by 
the distance between two samples on the MDS plot. The MDS plots have been shown in Fig. 2 with the 10 
predefined environments. In this analysis, the visualization highlights the separation of the microbes from 
human/animal hosts from other samples along the first dimension and the separation of the aquatic and mat 
communities along the second dimension. 
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Fig. 2. Multiple dimensional scale plots of the distances calculated from unsupervised random forest. The 
distances are the number of times the samples appear on the same leaf of the tree, and the MDS has scaled 
them so that they plot projects those distances into two dimensions. Plotted by the original environments the 
sample came from. 

In Fig. 3 the LDA overall 27 metabolic variables separated the data and showed that the human and 
terrestrial associated animal metagenomes separated from a cluster consisting of all of the aquatic samples 
except the hyper-saline community. The mat samples separated distinctly from other cluster 

 
Fig. 3.  Linear discriminate analysis showing the position of the metagenomes in two-dimensional space from 

the 10 environments. 

For more detail and effective statistical analyses in terms of classification of the metagenomes correspond to 
their environments from which they belonged and sequenced, the robust statistical approaches should be 
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employed. DNA sequence count of metagenomes may however suffer from the presence of extreme values. 
This kind of characteristics of the data increases the misclassification error rate and as a result provides low 
accuracy and precision of the statistical analyses. The robust or noble statistical or classification techniques 
will simultaneously deal the fact of presence of extreme as well as missing values in the DNA count dataset 
of metagenomes and provide decent appropriate explanatory and conclusive results. 

Conclusion 
The analyses separated the microbial samples into three broad groups: the human and animal associated 
samples, the microbial mats and the aquatic samples. The RF technique showed that phage activity is a 
major separator of host-associated microbial communities and free-living, suggesting that the phages are 
playing different ecological roles within each environment. The MDS and LDA techniques suggest that mat 
communities separated from both the animal associated metagenomes and the aquatic samples by the 
vitamin and cofactor metabolism, suggesting a role for secondary metabolism associated with growth in 
extreme environments. The dominant metabolic feature that separated the aquatic samples was 
photosynthesis. The marine environment categories of open ocean, coastal waters, coral reef and deep 
oceans share many metabolic features and therefore these metagenomes were placed into categories 
different than their a priori group assignment. This suggests subtle variation in metabolic processes that are 
occurring in the microbial communities from each environment that should be investigated in the future. 
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