Introduction:

Diabetic retinopathy (DR) is the chronic ocular disorder that develops, at least to some degree, in most of the diabetic cases. DR is highly specific vascular complication occurs in both type 1 and type 2 diabetes. However, it has been shown that retinopathy due to diabetes is strongly associated with duration of diabetes. Prevalence of DR shows wide difference in different geographical areas, and shows ethnic variation. The over all prevalence of DR in Bangladesh has been found to be around 11.1%. Whereas it’s prevalence in some other Asian countries was found between 3%, lowest in Japan and about 10-32% in Indonesia. If diabetes is diagnosed between the ages of 10 to 30 years, significant retinopathy may arise within 6 years of the disease. With appropriate medical and ophthalmologic care, >90% of visual loss resulting from diabetic retinopathy can be prevented. The clinical course of DR is well understood, but the pathological mechanism of visual loss is yet to be clearly understood. Factors that initiate and promote the development of diabetic retinopathy include duration of diabetes, poor glycolic control, treatment with insulin and associated hypertension and hyperlipidemia. However, other important risk factors so far been associated with DR are age at diagnosis, older patients, puberty, pregnancy, smoking, male sex, leaner patients and populations attending a medical centre as opposed to rural setting. Possible causes of pathological basis of anatomical changes in the retina are grouped into three categories: biochemical, homodynamic and endocrine. However, these factors tend to interact in the development of retinopathy. A substantial number of diabetic patients in our country belong to younger age group. They do not fit to either of the major two types, type 1 and type 2, of diabetes; however, in the latest classification of diabetes these groups of patients have been classified as type 2 DM. With the availability of this unique group of patients the present study was undertaken to explore the role of clinical characteristics, lipid profile and duration in the development of diabetic retinopathy.

Summary:
The pathogenesis of diabetic retinopathy is still unclear. The relative role of duration of diabetes have been thought to be factor associated with diabetic retinopathy. A total number of 91 diabetic subjects, diabetes diagnosed before the age of 30 years, was recruited from the outpatient department, BIRDEM Hospital. Diabetic subjects recruited were sub grouped according to the duration of diabetes and presence of diabetic retinopathy was compared. The incidence of retinopathy was highest among the patients with longest duration of diabetes (p=.004) the earlier the age of onset of diabetes the more is the chance of development of diabetic retinopathy. It may be concluded that the duration of diabetes plays a central role in development of diabetic retinopathy in absence of hypertension, hyperlipedemia and obesity.

Materials and method:
This study was conducted at the Department of Cell and Molecular Biology, Research Division & Department of Ophthalmology, BIRDEM, during the period of January to June 2002. Total 91 normotensive subjects were included in this case control study who was under 30 years of age at time of diagnosis. They had normal ophthalmologic findings at the time of diagnosis of diabetes mellitus. Pregnant and other albuminuric subjects were excluded. Newly diagnosed group had symptoms of diabetes less than three months. Total patients were divided into 4 groups according to the duration of diabetes.

Group A: twenty two subjects (male = 12, female = 10) were newly diagnosed patients.
Group B: twenty five subjects (male=9, female = 16) had duration of diabetes from one to four years.
Group C: twenty four subjects (male = 11, female = 13) had duration of diabetes from four years to eight years.
Group D: twenty subjects (male =10, female=10) had duration of diabetes from more than eight years.

Diabetes was diagnosed and classified by the criteria of the report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus17.

Grading of retinopathy: Was done by two independent trained ophthalmologists, used Airlie House Modification of ETDRS (Early Treatment Diabetic Retinopathy Study) classification3. Grading was done in masked fashion so that each grading was independent, and only identification numbers are available to graders. Retinopathy was assessed by:
1. The bright light of a indirect ophthalmoscope, halogen bulb, direct ophthalmoscope (Kilervista-20).
2. Silt-lamp biomicroscopy with+78D lens.

Fundus photography was done in all patients and fluorescein angiography was done in 25% of study population.

Anthropometric measurements: The body weight, in kilogram was measured in patients wearing light cloths and height in centimeter was measured by using appropriate scales on bare foot (Detect-Medic, Detect Scales INC, USA). Body mass index of the subjects was calculated as weight in kg divided by height in square meter.

Measurement of blood pressure: Blood pressure of every subject was measured by the same physician of Research Division, BIRDEM with a sphygmomanometer (Turf Trading Co, Ltd. Tokyo, Japan) in the sitting position.

Biochemical method: All the subjects were explained the test and written consent was obtained from them. Fasting (10-12 hours) blood samples (5ml) were drawn and serum prepared by centrifugation at 3000rpm for 10 minutes using refrigerated centrifuge. Serum samples were preserved at -70°C for biochemical analyses, Total cholesterol was measured by enzymatic colorimetric (Cholesterol Oxidase / Peroxides) method (SERA PAK, Bayer USA) 18-20. Serum triglycerides was measured by enzymatic colorimetric (GPO-PAD) method (SERA PAK, Bayer USA) 21. Serum High Density Lipoprotein (HDL) was measured by enzymatic colorimetric (Cholesterol Oxidase / Peroxidase) method (SERA PAK, Bayer USA) 22. The LDL-Cholesterol level in serum was calculated by using Friedewald formula:23.

Statistical analysis: All analysis was done using the SPSS (statistical package for social science) package for windows. Experimental values were expressed as mean ± SD Comparison among groups was done by one way ANOVA with Bonferroni correction. Chi-Square test was also performed for categorical data. To compare results between two groups Student’s t-test was performed. Statistical significance was considered to be indicated by a P value of less than 0.05% in all cases.

Results:
The newly diagnosed group (group A) found to have significantly higher age (25.2 ± 2.8 mean ± SD) at diagnosis compared with group B (20.4 ± 4.1), C (17.8 ± 1.3) and D (17.6 ± 1.4). BMI of all the four groups did not show any statistical difference among themselves. The group also had similar systolic and diastolic blood pressure (Table-I)

In table II serum total cholesterol triglyceride, HDL Cholesterol and LDL Cholesterol did not show significant difference among different groups.
The Role of Duration of Diabetes in the Development of Diabetic Retinopathy

SS Subhan et al.

Table I

Clinical characteristic of the study subjects.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Age at diagnosis</th>
<th>BMI</th>
<th>SBP</th>
<th>DBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A n=22 (Newly diagnosis)</td>
<td>25.18±2.81</td>
<td>21.19±5.70</td>
<td>109.77±13.76</td>
<td>74.09±7.50</td>
</tr>
<tr>
<td>B n=25 (1 year – 4 years)</td>
<td>20.44±4.06</td>
<td>19.12±3.90</td>
<td>104±10.70</td>
<td>69.80±8.35</td>
</tr>
<tr>
<td>C n=24 (>4 years – 8 years)</td>
<td>17.79±5.07</td>
<td>19.18±2.63</td>
<td>100.63±10.87</td>
<td>67.08±7.06</td>
</tr>
<tr>
<td>D n=20 (>8 years)</td>
<td>17.65±4.18</td>
<td>19.58±2.15</td>
<td>108.75±12.31</td>
<td>71±7</td>
</tr>
<tr>
<td>F/P</td>
<td>15.929/.004</td>
<td>1.436/.152</td>
<td>2.938/.152</td>
<td>3.410/.084</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SD. One way ANOVA with Bonferroni correction was performed. n=numbers of subjects; age at diagnosis, the age at time of diagnosis was first recorded by physician on the patient’s chart or on a hospital record; BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure.

Table II

Lipid profile in the study group.

<table>
<thead>
<tr>
<th>Groups</th>
<th>T Chol (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>HDL-Cho(mg/dl)</th>
<th>LDL-Cho (Mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A n=22 (Newly diagnosis)</td>
<td>163±36</td>
<td>130±63</td>
<td>37±8</td>
<td>100±35</td>
</tr>
<tr>
<td>B n=25 (1 year – 4 years)</td>
<td>175±32</td>
<td>139±35</td>
<td>31±6</td>
<td>115±20</td>
</tr>
<tr>
<td>C n=24 (>4 years – 8 years)</td>
<td>158±23</td>
<td>118±31</td>
<td>37±7</td>
<td>97±23</td>
</tr>
<tr>
<td>D n=20 (>8 years)</td>
<td>177±28</td>
<td>133±43</td>
<td>37±11</td>
<td>112±27</td>
</tr>
<tr>
<td>F/P</td>
<td>1.97/.48</td>
<td>.939/.425</td>
<td>2.936/.152</td>
<td>2.329/.32</td>
</tr>
</tbody>
</table>

Results are expressed as mean ±SD. One way ANOVA with Bonferroni correction was performed. n=numbers of subjects; T chol, Total Cholesterol; TG, Triglycerides; HDL-cho, High density lipoprotein cholesterol; LDL-cho, Low density lipoprotein cholesterol.

In table III the results showed that in group A 4.55% had mild retinopathy vs 95.45% had no change. In group B 20% had mild retinopathy vs 80% normal. In group C 12.5% mild retinopathy vs 87.5% had no change. In group D 45% had mild, 10% moderate, 5% proliferative type of retinopathy vs 40% no retinopathy. Diabetic retinopathy had significant association with duration of diabetes (p=.0004) which was showed in table IV.

In table V it was expressed that there was no significant difference in HDL Cholesterol and LDL Cholesterol. But in DR group total Cholesterol and triglyceride level were significantly higher (P=.02) and (P=.008) respectively.

In table VI comparison in detection of retinopathy was expressed. There was no significant difference in detection of retinopathy between Fundus photography and Fluorescien Angiography.

Table III

Ophthalmological finding in the study group. (Grading of Retinopathy)

<table>
<thead>
<tr>
<th>Group</th>
<th>A n=22 (Newly diagnosed)</th>
<th>B n=25 (1 year – 4 years)</th>
<th>C n=24 (>4 years – 8 years)</th>
<th>D n=20 (>8 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDR</td>
<td>21 (95.45%)</td>
<td>20 (80%)</td>
<td>21 (87.5%)</td>
<td>8 (40%)</td>
</tr>
<tr>
<td>DR NPDR (mild)</td>
<td>1 (4.55%)</td>
<td>5.20%</td>
<td>3(12.5%)</td>
<td>9.45%</td>
</tr>
<tr>
<td>DR NPDR (Moderate)</td>
<td>2 (10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR PDR</td>
<td>1(5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results are expressed as percentage, n=number of subjects; NDR, no-diabetic retinopathy; DR, diabetic retinopathy; NPDR (mild), nonproliferative diabetic retinopathy; NPDR (moderate), nonproliferative diabetic retinopathy; (PDR, proliferative diabetic retinopathy.)
Table IV

<table>
<thead>
<tr>
<th>Duration of Diabetes Mellitus</th>
<th>Group – B (1 to 4 years)</th>
<th>Group – C (>4 to 8 years)</th>
<th>Group-D (>8 years)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to >8 years</td>
<td>5 (20%)</td>
<td>3 (12.5%)</td>
<td>12 (60%)</td>
<td>20 (29.1%)</td>
</tr>
<tr>
<td>n=25</td>
<td>n = 24</td>
<td>n=20</td>
<td>n=69</td>
<td></td>
</tr>
<tr>
<td>New cases</td>
<td>1 (4.55%)</td>
<td>1 (4.55%)</td>
<td>1 (4.55%)</td>
<td>1 (4.55%)</td>
</tr>
<tr>
<td>n=22</td>
<td>n=22</td>
<td>n=22</td>
<td>n=22</td>
<td></td>
</tr>
<tr>
<td>Pvalue</td>
<td>0.19</td>
<td>0.61</td>
<td>0.0004</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Results are expressed percentage. Chi-Square with Fisher’s correction test was performed. n=number of subjects.

Table V

<table>
<thead>
<tr>
<th>Group</th>
<th>TC Chol (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>HDL-Chol (mg/dl)</th>
<th>LDL-Chol (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDR (n=70)</td>
<td>164.54±31.27</td>
<td>124.36±45.61</td>
<td>35.88±8.76</td>
<td>103.79±29.3</td>
</tr>
<tr>
<td>DR (n=21)</td>
<td>181.47±26.89</td>
<td>150.80±35.27</td>
<td>35.66±9.50</td>
<td>115.64±29.2</td>
</tr>
<tr>
<td>t/pvalues</td>
<td>-2.43/02</td>
<td>-2.80/008</td>
<td>.09/.927</td>
<td>-1.63/.113</td>
</tr>
</tbody>
</table>

Results are expressed as mean ±SD. Unpaired student’s t-tests was performed. n=number of subjects; FG, fasting glucose; C-pep: glucose, fasting C-peptide glucose ratio; HbA1c, Glycosylated haemoglobin. T chol, Total cholesterol; TG, Triglycerides; HDL-cho, High density lipoprotein cholesterol; LDL-cho, Low density lipoprotein cholesterol.

Table VI

<table>
<thead>
<tr>
<th>Technique used</th>
<th>DR no (%)</th>
<th>DR, NPDR (mild) no. (%)</th>
<th>DR, NPDR (moderate) no. (%)</th>
<th>DR, PDR no. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundus Photography n=21</td>
<td>13(62%)</td>
<td>10(48%)</td>
<td>2(9.52%)</td>
<td>1(4.76%)</td>
</tr>
<tr>
<td>Fluorescien Angiography n=21</td>
<td>9(42.8%)</td>
<td>6(26%)</td>
<td>2(9.52%)</td>
<td>1(4.76%)</td>
</tr>
<tr>
<td>P Value</td>
<td>0.35*</td>
<td>0.31*</td>
<td>0.56*</td>
<td>0.66*</td>
</tr>
</tbody>
</table>

Results were expressed as percentage. Chi-Square test was performed, n=number of subjects; NDR, no diabetic retinopathy; DR, diabetic retinopathy; NPDR (mild), nonproliferative diabetic retinopathy; NPDR (moderate), nonproliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy. (***) Chi-Square with yeats’ correction. (***) Chi-Square with Fishe’s exact.

Discussion:
The relation between metabolic control in diabetes and the development and course of duration related micro vascular complications like diabetic retinopathy remains controversial. Even after long years and large number of studies the confusion shows no sign to get cleared. One of the major reasons for such confusions is the complexity of the problem itself.

At cellular level the factors that initiate and promote the development of diabetic retinopathy include duration of diabetes, poor glycaemic control, insulin treated patients and the concomitant presence of hypertension and hyperlipidaemia. It is also influenced by a number of other variables. Although a number of investigators have tried to dissociate those factors with an attempt to explore the
etiology of diabetic retinopathy, most of those have been done by statistical analysis. Moreover, a bulk of those studies was performed on subjects belonging in IDDM and NIDDM group. But studies on a ‘third group’ without the presence of the complicating variables of diabetic retinopathy would have been ideal to investigate the etiopathogenesis of diabetic retinopathy.

A relatively large number of young lean patients in Bangladesh provide a unique model for such studies. As it can be seen in Table I, 4 groups of diabetic subjects were found BMI matched and they had blood pressure within normal range, Age at onset of diabetes is significantly lower in one group related group to higher incidence of diabetic retinopathy (60%). This group has duration of diabetes more than 8 years. Population study in Rochester, Minnesota supported our findings.

Diabetic retinopathy is significantly higher (60%) in the subjects who has diabetes for >8 years. It is only 4.55% at the time of diagnosis. So duration of diabetes had a strong positive correlation with the incidence of diabetic retinopathy. This observation is consistent with findings of Frank et al\(^27\), Palmberg et al\(^28\), DCCT data\(^29\), WESDR data\(^30,31\). The duration of diabetes had been found repeatedly to be the most important known determinant of the presence of retinopathy.

In DR group, total cholesterol and tryglyceride levels were found higher in comparison to NDR group, but the values of total difference in total cholesterol and tryglyceride levels were within normal limit in DR group. But Guereci B et al showed no significant increase of total cholesterol and tryglyceride level in diabetic retinopathy except LDL cholesterol which had significant value\(^32\). It seems that dyslipidemia may also be related to DR, but causal role of it in this pathologic condition in yet to be established.

Color photography and fluorescien angiography are the two advanced techniques used to confirm diabetic retinopathy. Each modality is more sensitive in detecting early retinopathy than a clinical examination\(^33\). Palmberg et al\(^28\) found fundus photograph superior to fluorescien angiography but Frank et al\(^27\) has found the reverse. In DCCT, each method was about equal to the other, DCCT also suggested that, when used in conjunction with color photography, angiography allows a modest increase in sensitivity to the earliest signs of retinopathy, potentially useful in some research applications, although not of demonstrated value in patient management\(^34\). Airlie house modification of ETDRS classification\(^3\) uses fundus photography as the standard technique for diagnosis. In the present study fluorescien angiography, similar to DCCT finding, seems to have same sensitivity in diagnosing diabetic retinopathy.

Conclusion:

It was evident from the study that duration of diabetes plays a central role in the development of diabetic retinopathy. A sudden increase in the prevalence of diabetic retinopathy seems to occur as around 8 years. The incidence of retinopathy was highest among the patients with age of onset of diabetes was lowest. This study showed no relation of diabetic retinopathy with dyslipidemia and hypertension. No discrepancy was seen between the outcome of fundus photography and fluorescien angiography; it remains to be decided which one is preferable. Fundus photography is less costly, least hazardous, can be done in both eye in one sitting. But fluorescien angiography is very costly, hazardous (as dye introduced) and patient has to come twice for both eye. So to make a comparison between these two advanced techniques, a substantial number of patients from all grades of diabetic retinopathy would have to take to explore the issue.

Similar studies in adult onset diabetic patients, first degree relatives of diabetic patients, in lean IGT subjects and children in both diabetic patients may also help in deeper understanding of the path physiological basis of diabetic retinopathy.

References:

4. Chee JS. and Thai AC. Proceeding of the 7th Congress of the ASIAN Federation of Endocrine Societies 1993; S64:58.

