A 65 year old Bangladeshi male presented with compressive chest pain and respiratory distress for 2 days. He had hoarseness of voice and breathlessness for 1 year. He was hypertensive, diabetic and dyslipidemic, and had a past history of ischaemic.

Physical examination revealed a pulse rate of 92/min, blood pressure (BP) of 130/100mmHg, unremarkable praecordial and lung auscultation. ECG showed right bundle branch block. Troponin I and NTPro-BNP were normal. Echocardiogram revealed concentric LV hypertrophy with normal LV systolic dysfunction, and grade I diastolic dysfunction. Chest X ray showed widened mediastinum with prominent aortic knob (Fig.-1).

CT aortography showed a large saccular dilatation of the arch of aorta (Fig.-2) distal to the left subclavian artery measuring 8.3cm transversely with mural thrombus. Another focal fusiform dilatation of proximal thoracic aorta measuring about 6.9cm at maximum was seen, with eccentric mural thrombus leaving a patent lumen of ~2.7cm. Fusiform diataion was also seen in the abdominal aorta (Fig.-3). No dissection seen. Extensive workups for thrombophilia were negative.

He was given beta blockers and ACE inhibitor for BP control, aspirin, and statin, in line with ACCF/AHA recommendations. Given the mural thrombus, he was treated with enoxaparin, and discharged on warfarin. He was offered thoracic endovascular repair of aneurysm (TEVAR) or open surgical repair of thoracic aortic aneurysm (TAA).

A 68 years Old Man with Compressive Chest Pain and Breathlessness

FA CADER, MM HAQ, N GHAFOOR


Fig.-1: Chest X ray AP view showing widened mediastinum with prominent aortic knob.

CT aortography image showing large saccular dilatation of the arch of aorta and focal fusiform dilatations of descending thoracic and abdominal aortae.

Fig.-2:
Discussion:
An aortic aneurysm is diagnosed when the ascending aorta is larger than 5 cm and the descending aorta is larger than 4 cm². Aortic root or ascending aortic aneurysms (~60%) are the most common TAA, followed by descending aorta (35-40 %) and aortic arch (<10%) ²,³. Thoracoabdominal aneurysms constitute approximately 3% of all aortic aneurysms and are usually diffuse and atherosclerotic in nature³. Atherosclerosis is the overall most common cause of aneurysm, accounting for 70%². In contrast to the ascending aorta, the majority of descending TAAs are atherosclerotic²,³. Most of them present in the sixth and seventh decades of life, with a male predominance, and involvement of abdominal aorta in one-third of patients².

The most likely aetiology in this case was atherosclerosis, as for most descending TAA, compounded by risk factors of smoking, hypertension, and older age⁴. Descending TAAs are typically fusiform, often begin distal to the origin of the left subclavian artery² and coexist with abdominal or arch aneurysms³. Most TAA and abdominal aortic aneurysms are clinically silent, with the aneurysm discovered incidentally on

Fig.-3: CT scan of chest (a) : Axial plane: Ascending aortic aneurysm showing filling defect (yellow arrow) denoting thrombus. (b): Axial plane: Descending TAA (red arrow) with thrombus (yellow arrow). (c): sagittal plane: descending TAA showing thrombus (yellow arrow). (d): coronal plane showing ascending aortic aneurysm (green arrow) and descending TAA and abdominal aortic aneurysms (pink arrow).
Aortic aneurysms at any level should be resected regardless of size. Modalities include open surgical repair (OSR) or Thoracic Endovascular aneurysm repair (TEVAR). TEVAR is a far less invasive alternative to OSR of descending TAAs, with lower morbidity and mortality rates, provided the aortic anatomy has adequate landing zones to accommodate the endograft. Long term surveillance of the aorta with imaging is imperative, with re-evaluation at 6 months after discovery of the aneurysm to document its stability. For degenerative TAAs bi-annual imaging is recommended for aneurysms between 4.5 to 5.4cm, and annual if 3.5-4.4cm.

References: