Haemophagocytic lymphohistiocytosis in Adult- A Case Report and Literature Review

SF HOSSAIN\textsuperscript{a}, NK QURESHI\textsuperscript{b}, Z MAHMUD\textsuperscript{c}, MI HOSSAIN\textsuperscript{d}

Summary:
Haemophagocytic lymphohistiocytosis (HLH) is a rare but potentially fatal disease of normal but overactive histiocytes and lymphocytes that commonly appears in infancy, although it has been seen in all age groups. The disease may be inherited or acquired due to infections, collagen vascular diseases and malignancies. The pathological hallmark of the syndrome is uncontrolled activation of T lymphocytes and macrophages, together with an impaired cytotoxic function of NK cells and CD8\textsuperscript{+} T lymphocytes, resulting into massive cytokine release (e.g., interferon \(\alpha\), TNF \(\alpha\), interleukin[IL]-6, 8, 10, 12, 18 etc) from these cells and overwhelming inflammation. Lymphocytes and macrophages, sometimes with haemophagocytic activity accumulate in bone marrow, spleen, liver, or lymph nodes.

Introduction:
Haemophagocytic lymphohistiocytosis (HLH) is a rare and frequently fatal syndrome of pathological immune activation, characterized by unregulated histiocyte proliferation and hypercytokinemia.\textsuperscript{1} It comprises two different conditions, a primary or genetic \textsuperscript{2} and a secondary or acquired form \textsuperscript{3} which may be difficult to distinguish one from another. The primary autosomal recessive form, also known as familial haemophagocytic lymphohistiocytosis (FHLH), is usually seen among children though adult cases have been reported.\textsuperscript{4} FHLH were first reported among in two siblings in 1952 \textsuperscript{5} and has an estimated incidence of 1 case per 50,000 live-born children.\textsuperscript{6} This variety is a fatal disease with a median survival less than 2 months after diagnosis if untreated, and it typically has its onset during infancy or early childhood.\textsuperscript{7} Despite its name, family history is often negative since the disease is recessive and its onset may be triggered by infections as well.\textsuperscript{8} Secondary (sHLH) or acquired HLH was first established as a distinct clinicopathological entity by Risdall in 1979 \textsuperscript{25} which is more common among adults and typically occurs after strong immunological triggers that may occur with a variety of viral, bacterial, fungal, parasitic infections, collagen-vascular diseases,\textsuperscript{9-12} and malignancies, particularly T-cell lymphomas.\textsuperscript{13-16} Considering association, infection is important in both sporadic and familial cases. HLH may often mimic infectious illnesses, such as overwhelming bacterial sepsis and leptospirosis;\textsuperscript{17} and may also obscure the diagnosis of a precipitating, treatable infectious illness (as reported for visceral leishmaniasis).\textsuperscript{18} We report a case of HLH in adult in order to illustrate the spectrum of clinical features and to emphasis the importance of prompt diagnosis and initiation of therapy.

Case Report:
A 65-years-old male, known patient of hypertension, diabetes mellitus, coronary artery disease (triple vessel disease with left main), had CABG (one month past) was admitted into Medicine department of United
Hospital Limited in June 2013 with complaints of drowsiness for 1 day with a recent history of high grade intermittent fever and generalized erythroderma for preceding 6 days. He had no history of headache, convulsion, vomiting, diarrhoea, sore throat, cough, urinary complaints, trauma, documented hypoglycemia, recent change of medication or recent travel. Along with medications of prevailing chronic co-morbidities, he got injectable ceftriaxone 2 gram/day for 4 days prior to admission.

Clinical examination revealed- GCS as 11, core temperature- 104°F, blood pressure as 140/70 mmHg, pulse as 120 bpm, generalized erythroderma distributed more in face, neck and trunk than limbs, congested conjunctiva, healthy sternotomy wound, no lymphadenopathy, no organomegaly and no sign of meningeal irritation with normal deep tendon and planter reflexes.

Initial investigations revealed pancytopenia (Hb%-11.1 mg/dl, WBC-3.2×10^3/µl with neutrophil 82%, PLatelet-107×10^3/µl), Hyponatremia (Na-123 mmol/L), raised ALT (128 U/L) and AST (86 U/L)), hypoalbuminaemia (22gm/L), rasied FDP [70 (mg/dl)] and D-dimer [58360 (µg/L)]. Other parameters as PT [13 second (sample)], INR [1.15], APTT-[32.9 (second)], serum procalcitonin [0.9ng/ml], renal function test, urine R/E were normal. ICT for malaria, Dengue, Chlamydia and Viral markers (HBsAg, Anti HCV, CMV IgM-IgG, CMV-PCR, EBV-Ab, HIV 1& 2) were negative. USG of abdomen showed mild hepatomegaly and chest x-ray detected no radiological abnormality. His blood and urine culture both aerobic and anaerobic deteced no organism.

During in-hospital course of illness, the patient received empirically injectable broad spectrum antibiotics (including meropenem) along with injectable antiviral (acyclovir) and antifungal ( fluconazole) for febrile neutropenia. Despite of supportive treatment with multiple PRBCs, platelet apheresis and G-CSF, pancytopenia worsened progressively (Hb: 11.1 to 8.9 gm/dl; WBC: 3.2 to 0.6 ×10^3/µl ; neutrophil 82% to 32.8 %; platelet 107 to 74 ×10^3/µl). Serum bilirubin increased from 0.68 to 2.9 mg/dl, ALT: 128 to 144 U/L and AST: 86 to 111 U/L and patient continued to remain febrile with fluctuating level of conciouness. CT & MRI of brain showed mild cerebral atrophy and CSF analysis revealed mononuclear pleocytosis with elevated protein content.

At this stage with precaution and supportive care, bone marrow aspiration was done which revealed as hypocellularity (Fig.-1) with severely depressed erythropoiesis, granulopoiesis. Megakaryocyte were reduce, lymphocytes and plasma cells were prominent with increased number of histocytes and also showed marked haemophagocytosis (Fig.-2)- altogether suggestive of Haemophagocytic syndrome / Haemophagocytic lymphohistocytosis (HLH). Further studies which revealed elevated serum Ferritin (4541µg/L), Hypofibrinogenaemia(1.07 gm/L) supported the diagnosis of HLH.

**Fig.-1:** Low power view of the bone marrow smear of the patient showing hypocellularity.

**Fig.-2:** High power view of the bone marrow smear of the patient showing several macrophages laden with cell debris (arrow)
Patient fulfilled five of eight diagnostic criteria of HLH including fever, cytopenia, high ferritin, hypofibrinogenaemia and typical bone marrow findings. Therefore treatment according to HLH-2004 protocol was initiated with Etoposide, Dexamethasone, CyclosporineA on the 7th day after admission. Patient remained static during initial three days of chemotherapy but subsequently patient clinical and biochemical parameters deteriorated with all continued supportive treatments. (progressive pancytopenia: as Hb: 9.8 to 9.3 gm/dl; WBC: 0.6 to 0.03 ×10^3/µl; neutrophil 32.8 % to 23.5 %; platelet 74 to 22.4×10^3/µl). Repeated blood and urine cultures were sterile. Repeat serology did not identify any significant viral titre. The clinical condition of the patient further deteriorated with circulatory & respiratory insufficiency requiring ionotropic support and mechanical ventilation. Despite continued specific and supportive therapy, the patient succumbed to the illness within 12 days of admission and after 5 days of start of chemotherapy.

**Discussion:**

HLH encompasses a heterogeneous class of rare but potentially fatal disorders characterized by multi-system inflammation, that occurs due to prolonged and intense activation of antigen-presenting cells (macrophages, histiocytes) and CD8+T-cells, and excessive proliferation and ectopic migration of T-cells resulting into consumption and apoptosis of various hematologic cell lines. The primary form (FHLH) is an inflammatory disease which is similar to secondary one on the basis of symptoms. Age of onset of this variety is less than one year of age in 70% of cases but it can rarely be observed in the first two weeks of life. In rare cases, it may occur in adults as well. Although several types of gene mutations e.g.; PRF 1, UNC 13D, STX 11, RAB27A, STXBP2, SH2D1A, XIAP, LYST etc. have been identified in patients with primary HLH, they all lead to the common phenotype of impaired cytotoxic function by NK and T cells, and a predisposition to develop HLH.

Acquired (secondary) forms of HLH may develop as a result of strong immunological activation of the immune system, which may be caused by a severe infections, rheumatological disorders and malignancies. It generally occurs among older children and adults who present without a family history or known genetic cause. Leading triggering agents of infection-associated haemophagocytic syndrome (IAHS) are viruses of the herpes group, especially EBV and CMV. The patients in the original report by Risdull et al. were mostly associated with viral infection following organ transplantation. Subsequently its association was established with many viruses as well as a number of bacteria, fungi, mycobacteria and parasite and the term Viral Associated Haemophagocytic Syndrome (VAHS) was redesigned as Infection Associated Haemophagocytic Syndrome (IAHS). A review of published cases in children with IAHS reported that more than half of them were from Far East and Ebstein Barr Virus (EBV) was the triggering virus in 74% of the children. Fardet et al reported Human Herpes virus 8 associated HLH among HIV-infected patients. Malignancy associated acquired HLH (MAHS), with lymphoma being the commonest trigger, is well known entity in adults but rare in children. In a recent review of patients with lymphoma associated haemophagocytic syndrome (LAHS) in Japan showed that EBV genome was detected from more than 80% of T/NK cell lymphoma but rarely from B cell lymphoma. Macrophage-activation syndrome (MAS) is a special form of HLH which occurs both in children and adults with autoimmune diseases, and most commonly seen in association with systemic onset juvenile rheumatoid arthritis (sJRA) or adult onset Still’s disease and rarely found with systemic lupus erythematosus or other entities. Clinical picture and laboratory findings are similar to HLH. Patients of sJRA were found to have low NK cell function and perforin expression compared to other form of rheumatoid arthritis. MAS is a grave disorder with a mortality of about 10-20%. It has been suggested by some rheumatologists that MAS be classified as a form of secondary HLH. Categorizing patients as having either “primary” or “secondary” HLH at diagnosis is of limited value. Without a known genetic defect or family history, it is often not possible to make an initial diagnosis of “primary” or “secondary” HLH. Furthermore, a careful search for underlying disease triggers should be performed in all patients. However, Recurrence of HLH, in the absence of autoimmune disease or malignancy, is generally considered to be good evidence that a patient has primary HLH. Despite attempts to differentiate primary from secondary HLH, the clinical presentation...
is highly overlapping, hence initial treatment should not be delayed or altered based on these categories. The clinical picture of HLH is nonspecific and differentiation of HLH from sepsis with disseminated intra vascular coagulation (DIC) can be difficult. Generally, the onset of HLH is acute or subacute, with persistent high-grade fever (e"38,5° C and e"7 days), anorexia, and weight loss. Enlargement of the spleen and liver are often seen in HLH. Rash, jaundice, edema, lymphadenopathy, and cerebro-meningeal symptoms (meningitis, seizures, gait and balance problems, etc) can also be present. Life-threatening multi organ failure is frequently seen in full-pictured HLH. The fever often fluctuates with complete remission and recurrence. Patients may have a variety of skin manifestations, including generalized maculopapular erythematous rashes, generalized erythroderma, edema, panniculitis, morbilliform erythema, petechiae, and purpura. The incidence of skin manifestations ranges from 6%-65% with highly pleomorphic presentations. Some patients may present with features suggestive of Kawasaki disease, including erythematous rashes, conjunctivitis, red lips, and enlarged cervical lymph nodes. The patient in our case report presented with prolonged fever with generalized erythroderma.

Patients may develop pulmonary dysfunction which is an ominous sign. In a review of the radiographic abnormalities in 25 patients, 17 had acute respiratory failure with alveolar or interstitial opacities, with fatal outcomes in 88% of those cases. Our patient developed acute respiratory failure and needed ICU support including mechanical ventilation.

More than one-third of patients will present with neurologic symptoms, including seizures, meningismus, altered level of consciousness, cranial nerve palsy, psychomotor retardation, ataxia, irritability, or hypotonia. Patient may have even only neurological manifestations. The cerebrospinal fluid (CSF) is abnormal in >50% of HLH patients with findings of pleocytosis, elevated protein, and/or haemophagocytosis. MRI findings are variable, including discrete lesions, leptomeningeal enhancement, or global edema, and images correlate with neurologic symptoms. Retinal hemorrhages, swelling of the optic disc and infiltration of the choroid have been reported in infants with HLH. Diffuse peripheral neuropathy with pain and weakness secondary to myelin destruction by macrophages may also occur.

The workup for HLH includes a complete and differential blood count, renal function tests, liver function tests, fasting triglycerides, international normalized ratio, partial thromboplastin time, fibrinogen, and ferritin. The most characteristic laboratory findings in HLH are cytopenia affecting e"2 cell lineages in peripheral blood and hyperferritinemia, often "sky high" >10,000 µg/L. Anemia and thrombocytopenia occur in >80% of patients at the time of presentation that depends on combination of haemophagocytosis, hypersplenism and massive cytokine release by activated macrophages (e.g., INF à, TNF-à). Thrombocytopenia is almost always present and can lead to severe bleeding, especially in the presence of coagulopathy (e.g., low fibrinogen level). Current case had pancytopenia.

Hepatic manifestations of HLH include a moderate increase in serum transaminases, pronounced cholestasis, raised serum bilirubin, decreased serum albumin and coagulation factors deficiency. Most patients have variable evidence of hepatitis at presentation. Autopsy evaluation study of the liver has shown chronic persistent hepatitis with periportal lymphocytic infiltration in 22 of 27 patients with HLH. Our reported case had transaminisits. Hypertriglyceridemia, hypofibrinogenemia, elevated serum lactate dehydrogenase, hyponatremia are frequently seen in HLH. Elevated VLDL and decreased HDL may also be present. Nearly 95% of patients have features of disseminated intravascular coagulation and are at high risk for acute bleeding & associated with high (>70%) mortality when present. Elevated ferritin levels (>10,000 µg/L) are reported to be 90% sensitive and 96% specific for HLH in children, although this has not been validated in adults.

Investigations for secondary triggers of HLH include investigations for viral infections (particularly EBV, HSV, HIV and CMV) and for malignancies as clinically indicated. A search for these etiologic agents was performed in our patient. He was found to be negative for EBV,HSV, HIV, CMV virus. However it should be emphasized that with the possible exception of leishmaniasis, anti-infectious therapy alone is not sufficient to control HLH. A lumbar puncture is also recommended as part of a diagnostic workup, and more than half of patients will have a moderate pleocytosis and/or increased protein content, even in the absence of neurological symptoms. The caution with lumbar puncture must be taken with regard to a possibly increased intracranial pressure. All patients should have a bone marrow aspiration. However, frank haemophagocytosis may not be
observed early in the course of the disease, and serial marrow aspirates may be helpful. 58, 59
Haemophagocytosis might be found in the first bone marrow aspiration of a FHLH patient but the absence of it will not rule out this diagnosis. As a result, if the bone marrow is not conclusive, material should be obtained from other organs e.g.: liver, spleen, and lymph nodes and occasionally the central nervous system, skin and serial aspirates over time may also be helpful.58, 59 In our case, the bone marrow aspiration was performed and it revealed haemophagocytosis. Activated macrophages may engulf erythrocytes, leukocytes, and platelets, their precursors, and cellular fragments. These cells appear “stuffed” with other blood cells. Haemophagocytosis may be present in the liver and infiltration of the hepatic portal tracts with lymphocytes is also common.60, 56 Although haemophagocytosis in bone marrow is associated with HLH, the morphologic phenomenon may also be induced by more common events, including blood transfusions, infection, autoimmune disease, and other forms of bone marrow failure or causes of red blood cell destruction.64-66 Despite the nomenclature of HLH, diagnosis should never be made or excluded solely on the presence or absence of haemophagocytosis. Infiltration of bone marrow or liver by activated macrophages, along with global clinical evaluation, may distinguish HLH from other causes of haemophagocytosis. Two highly sensitive diagnostic parameters are low natural killer (NK) cell activity, and a hypercytokinemia, in particular elevated alpha chain of the soluble interleukin-2 receptor (sIL-2r) levels (sCD25) in serum and in the CSF.72, 73 NK cell activity helps to differentiate between reactive form of HLH from familial type. In patients with FHL, NK cell number is normal, but the activity is persistently decreased or absent. Patients with acquired HLH may have low NK cell number; NK cell function is decreased with active disease, but usually reverts to normal after treatment. 29 The laboratory work-up should involve perforin expression by NK cell by using flow cytometry. Patients lacking perforin expression should be analyzed for the PRFI gene mutation, Molecular studies for HLH include mutations in perforin (PRF), Munc 13-4 (UNC13D), Syntaxin 11 (STX11), and others can be done at specialized centers.

To assist with the rapid diagnosis of HLH, the Histiocyte Society has developed a set of diagnostic guidelines that encompass both clinical and laboratory findings35 which are summarized in Table 1.

Table 1

Revised Diagnostic Guidelines for HLH

| The diagnosis of HLH can be established if one of either 1 or 2 below is fulfilled |
| 1. A molecular diagnosis consistent with HLH |
| 2. Diagnostic criteria for HLH fulfilled (At least five criteria) |

A. Initial diagnostic criteria (to be evaluated in all patients with HLH)
   - Fever
   - Splenomegaly
   - Cytopenias (affecting ≥ 2 of 3 lineages in the peripheral blood):
     - Haemoglobin < 90 g/L (in infants < 4 weeks: haemoglobin < 100 g/L)
     - Platelet < 100 × 10^9/L
     - Neutrophils < 1.0 × 10^9/L
   - Hypertriglyceridermia and / or hypofibrinogenemia:
     - Fasting triglycerides ≥ 3.0 mmol/L (i.e. ≥ 265 mg/dl)
     - Fibrinogen ≤ 1.5 g/L
   - Haemophagocytosis in the bone marrow or spleen or lymph nodes
   - No evidence of malignancy

B. New diagnostic criteria
   - Low or absent NK-cell activity (according to local laboratory references)
   - Ferritin ≥ 500 µg/L
   - Soluble CD25 (i.e. soluble IL-2 receptor) ≥ 2400 U/ml

N.B: In the absence of a family history or specific molecular diagnosis, at least five diagnostic criteria are needed for a diagnosis of HLH.
In the absence of a family history or specific molecular diagnosis, an assemblage of at least five of the eight diagnostic criteria are needed for a diagnosis of HLH and initiation of therapy [35]. At the end after ruling out other diagnoses and considering the fact that our patient had five criteria for HLH (fever, pancytopenia, hyperferritinemia, hypofibrinogenemia and Haemophagocytosis in bone marrow), we decided that HLH is the most probable diagnosis. It is important to consider the fact that none of these eight criteria are specific for HLH diagnosis and might be found in sepsis, SIRS and MODS. For example the etiology of hypertriglyceridemia in these states can be multifactorial such as insulin resistance and inhibition of lipoprotein lipase activity. High level of serum ferritin has also been associated with inflammatory states and is frequently seen in toxic patients due to the up regulation of hemoxygenease-1 (heat shock protein). Ferritin is also an anti-apoptotic agent in ischemia-reperfusion injury. Elevated soluble IL-2 receptor (CD25) is also observed in sepsis, SIRS and can be a predictive marker in neonatal sepsis. Similar to HLH disease, NK-cell activity is also decreased in sepsis and thermal injury.

The therapy of any form of HLH should focus on: (1) suppression of the life-threatening hyper-inflammatory status by destruction of activated CD8+ T lymphocytes and macrophages, and (2) treatment of any existing HLH triggers. In cases of FHL, an additional aim is correction of the underlying immune defect. The first prospective international treatment protocol for HLH (HLH-94) was introduced in 1994. The experience gained from this protocol and other studies have led to the development of a new treatment protocol, HLH-2004 (including etoposide, dexamethasone and CyA). Current international HLH 2004 protocol is designed for all patients with newly diagnosed HLH, with or without evidence of familial or genetic disease, and regardless of suspected or documented infection. The protocol represents systemic chemo-immunotherapy including dexamethasone, cyclosporine A, etoposide and, in selected patients, intrathecal therapy with methotrexate. Corticosteroids show cytoxic effect and inhibit expression on cytokines. Cyclosporine A prevents T-lymphocyte activation. Etoposide is an anti-neoplastic agent highly effective in monocytic and histiocytic disorders. Intrathecal methotrexate is used only in patients with persistently abnormal cerebrospinal fluid or progressive neurological symptoms and CNS reactivation.

In genetic HLH the ultimate aim must be hematopoietic stem cell transplantation (HSCT) to replace congenitally defective immune system with normal functioning immune effectors cells of healthy donors. However, in the vast majority of FHL cases immuno-chemotherapy with HLH-94 or HLH-2004 protocols is temporarily effective in the control of disease, and the outcome of FHL is uniformly fatal unless the patient undergoes allogeneic stem cell transplantation (allo-SCT). Treatment of sHLH is not standardized so far and remains highly variable across the centers. Obviously, if possible, treatment of any existing trigger of HLH is a must. Front line treatment of infection associated HLH and MAS (particularly of milder grades) usually involves corticosteroids (as in HLH-94 and HLH-2004 protocols) with or without intravenous immunoglobulin (IVIG), which may be sufficient to control hyperinflammation. After improvement of complete blood count and resolution of coagulopathy, steroids are slowly tapered down to avoid relapses. Patients with viral-associated haemophagocytic syndrome should receive appropriate anti–viral therapy such as ganciclovir for CMV. Other interventions include supportive therapy with antimicrobial prophylaxis and intravenous immunoglobulins (IVIg). Emmenegger and others had evidence that IVIG is effective in the treatment of HLH. A key finding of their analysis was that efficacy of IVIG was satisfactory if administered at the beginning (within hours) of the macrophage activation process. Rituximab, an anti–CD20 monoclonal antibody, has been used to suppress EBV– infected B cells in HLH. The utility of biological response modifiers, such as TNF-á inhibitors, IL-1 inhibitors, IL-6 inhibitors, or anti-CD52 antibodies remains unclear. Available case reports have conflicting results, and at present time there is no consensus on recommendations in respect to this group of drugs in HLH. Finally, anecdotal reports have also shown the efficacy of allo-SCT in refractory or recurrent sHLH (e.g., EBV-HLH, M-HLH). Acquired HLH, even when treated in a timely manner, can be fatal and deaths being reported among patients treated with massive doses of steroids. However, corticosteroid resistant non-responders may benefit from second-line therapies, such as CyA.
no response to aforementioned drugs, use of the HLH-2004 protocol including etoposide is recommended.35, 36, 38, 1 In summary, patients with sHLH could be started on therapy without etoposide, as long as treatment adjustments are made rapidly in refractory cases.87 Initial treatment is given for eight weeks, and patients with persistent disease or an underlying genetic abnormality (primary HLH) should go on to continuation therapy as a bridge to allogeneic stem cell transplantation. In patients with poor performance status and multi-organ dysfunction, palliation is reasonable.108

Although symptoms and laboratory features improve within 2 to 3 weeks, in some cases cytopenia may persist. In these cases bone marrow examination should be repeated to differentiate between non-response and myelosuppression due to etoposide. If there is no response, then unlikely to have benefit with medical treatment. There is no established salvage regimen. Isolated patient has responded to daclizumab, alemtuzumab or to stem cell transplantation. Hasegawa et al reported remission of HLH after syngenic bone marrow transplantation.109

Despite treatment, the prognosis of both familial and acquired forms of HLH is usually poor and is rapidly fatal in untreated cases. The CNS disease can cause relapses and may results into irreversible disability. Since HLH can be rapidly fatal without specific intervention, it is recommended that treatment be started when there is a high clinical suspicion, even when results of some diagnostic studies are still pending.

**Conclusion:**

HLH is a life-threatening hyper-inflammatory syndrome which remains difficult to diagnose and can be easily overlooked or misdiagnosed. The clinical features can mimic the multi-system involvement seen in severe sepsis or malignancy. The presenting features are so indistinct that unless definitive criteria are actively sought, many cases may go unrecognized or be recorded as sepsis. Early establishment of the diagnosis is very important for timely commencement of the treatment, before overwhelming disease activity makes irreversible damage and a response to treatment becomes less likely. Despite treatment, the prognosis of both familial and acquired forms of HLH is usually poor and is rapidly fatal in untreated cases.

**References:**


98. Strout M.P., Seropian S., Berliner N.: Alemtuzumab as a bridge to allogeneic SCT in atypical haemophagocytic


