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Abstract 
Agriculture sector throughout the world including Bangladesh is extremely vulnerable to the negative 
consequences of climate change as evident in a good number of studies. Accurate climate forecasting may 
prove a valuable resource in mitigating these consequences in agriculture. The study aims to identify the 
best performing forecasting method by comparing the forecasting abilities of univariate seasonal 
autoregressive integrated moving average (SARIMA) and multivariate vector autoregression (VAR) 
models in forecasting monthly maximum and minimum temperatures,  humidity,  and cloud coverage in 
Bangladesh. Though the univariate time series investigate the influence of the past values of a single time 
series on the future values of that specific series, the VAR approach forecast multivariate time series 
simultaneously incorporating the interrelationship among the groups of variables. Monthly forecasts of 
climatic parameters for in-sample over the period 1972-2008 and out-of-sample from 2009-2013 were 
generated via a univariate SARIMA and a VAR approach. Different forecast accuracy measures reveal 
that VAR model give better forecast than univariate SARIMA model. The forecast results using VAR(9) 
model from January 2014 to December 2021 show that maximum and minimum temperature, as well as 
humidity are increasing while the cloud coverage is decreasing, that is, consistent with global warming. 
Moreover, the impulse response function results exhibit the fluctuated and significant dynamic 
relationships in future among the foresaid climatic variables. Thus, findings of the study can potentially 
allow Bangladeshi farmers and other actors in the agriculture sector to make proper planning to abate 
unwanted impacts or reap the expected benefits of favourable climate. 

 
Introduction 
It is now widely accepted that the impacts of climate 
change is inevitable (e.g., IPCC, 2001)  in many parts of 
the world particularly in the developing countries and 
that proper planning, decision making are necessary to 
adapt with these changes. Climate change is a serious 
threat to crop productivity especially in the food 
insecure regions like south Asia. Rice growing countries 
of South Asia including Bangladesh is very much 
vulnerable to climate change. So, food security is totally 
weakened and in secured in those countries (Amin et al., 
2015; Al-Amin et al., 2017). Economic, food security 
and agricultural production throughout the world are 
highly defenseless due to climate variability. Farmers 
and other decision makers in agriculture are not ready 
for the weather conditions which occur and accordingly 
make their decisions based on previous experiences 
(Jones et al., 2000). Therefore, in temperate environment 
precise investigation, analysis and forecast of climate 
parameters are imperative for better management of 
agriculture. 
 
Climate predictions to the agriculture sector may help in 
mitigating some of the adverse effects of climatic 
variability (Easterling and Mjelde, 1987). If climate 
predictions are successfully implemented, it may be able 
to guide the population at risk to diminish vulnerability 
to climate change. Several studies have shown the 
potential benefits of using climate forecasts on the 

decision making process in agriculture (Jones et al., 
2000; Hansen, 2002). Many methods have been 
commonly used for modeling and forecasting of the 
climatic parameters (Dastorani et al., 2016). Among 
various modeling of climate variables, time series 
modeling is a key technique for long term forecast and 
decision making (Chatfield, 2001). Different statistical 
and graphical methods are used to select the best 
statistical model for forecasting a series. Many 
researchers have used time series modeling technique to 
forecast climatic variables (Dastorani et al., 2016). They 
concluded that combining different time series models is 
good for accurate forecasting (Dastorani et al., 2016). 
Finding the best model among various models is very 
important for accurate forecasting. Among two times 
series models (univariate and multivariate) the univariate 
time series model investigates the influence of the past 
values of a single time series on the future values of that 
specific series. In contrast, the multivariate time series 
model forecast a group of variables simultaneously 
incorporating the interrelationship among them. Climatic 
variables generally exhibit seasonality-periodic 
fluctuations, so among the univariate time series models, 
the seasonal autoregressive integrated moving average 
(SARIMA) model is useful in this context. Furthermore, 
the multivariate vector autoregression (VAR) model is 
used for more accurate forecasting of a group of 
variables incorporating the interrelationship among the 
variables.   
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To the best of our knowledge, a number of studies used 
single (e.g. univariate or multivariate) time series models 
or comparison within the single approach in simulation 
and prediction of single climate parameters. But few 
studies incorporate the comparison between multivariate 
vector autoregression (VAR) and univariate seasonal 
autoregressive integrated moving average (SARIMA) 
for climatic parameters. For instance, Dastorani et al. 
(2016) compare stochastic time series models for 
predicting rainfall in Iran. Ferdous and Baten (2011) 
used least squares method for trend analysis of climatic 
temperature, rainfall, relative humidity and sunshine in 
Bangladesh. Shahin et al. (2012) used VAR model for 
forecasting temperature, humidity and cloud coverage of 
Rajshahi district in Bangladesh. On this backdrop, our 
study aims to develop multivariate vector autoregression 
(VAR) forecast models for forecasting monthly 
minimum temperature, maximum temperature, humidity 
and cloud coverage in temperate climate condition-a 
case of Barisal District (South-central) of Bangladesh 
and also, compare the performance of the VAR model 
with univariate SARIMA model. Furthermore, our study 
determines the response of one climate variable for the 
shock of other variables in future using impulse response 
function (IRF). 
 

Materials and Methods  
 

Data 
The data set of our study was collected from Bangladesh 
Meteorological Department (BMD) over the period 1972 
to 2013 (i.e. 42 years) of Barisal district covering 780 
observations including year-wise monthly average 
maximum temperature, minimum temperature, humidity, 
and cloud coverage. The measurement units of these 
variables are Degree Celsius, Percent and Octas, 
respectively. Barisal district was selected because of the 
vulnerability of this district’s due to climate change. We 
split the entire data into two parts as training data set 
over the period 1972 to 2008 and test data set over 
period 2009 to 2013. The training dataset is used to 
estimate the model whereas the test dataset is used for 
assessing the accuracy of the forecasts using the fitted 
model. Afterwards, we estimate the parameters of the 
model using the training set and use the test data as an 
out-of-sample trial run to analyze how well the model 
predicts future unknown data.  
 

Model specification 
 

Unit Root Test 
In order to determine whether the climatic variables are 
stationary in our study, the different unit root tests: 
Augmented Dickey Fuller (Dickey and Fuller, 1979), 
Phillips-Perron (Phillips and Perron, 1988) and 
Kwiatkowski-Phillips-Schmidt-Shin (Kwiatkowski et 
al., 1992) were carried out. 
 

Seasonal Autoregressive Integrated Moving Average 
(SARIMA) 
Let ty be a climatic time series data over a 
period, .,,2,1 nt K=  Seasonal autoregressive integrated 

moving average model (SARIMA) with s observations 
per period, represented by SARIMA (p,d,q) (P,D,Q)s, is 
given as follows: 
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autoregressive (AR) polynomial function of order p with 
vector of coefficients 
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seasonal polynomial functions of order P and Q, 
respectively, d represents the required number of 
differences to become a series stationary, D is the 
number of seasonal differences and tε are error 
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Fitting a SARIMA model, the Box-Jenkins modeling 
approach proposed by Box and Jenkins (1970), is 
commonly used. The best model is obtained with a 
minimum value of Akaike information criterion (AIC), 
Corrected AIC (AICc) or Bayesian information criterion 
(BIC). The Ljung–Box test for autocorrelation (Ljung 
and Box 1978) and the Kolmogorov-Smirnov test 
(Chakravarti et al., 1967) for normality as well as 
Normal Q-Q plot and histogram of the residuals is used 
to check the adequacy of each model. Finding 
appropriate values for p, d and q can be complicated. 
Thus, in our study, we used the statistical software R to 
fit SARIMA models to climate data using the 
auto.arima() function in ‘forecast’ package proposed by 
Hyndman and Khandakar (2008). Hyndman and 
Khandakar algorithm which coalesces unit root tests, 
minimization of the AICc and Maximum Likelihood 
Estimation (MLE) to attain an ARIMA model is 
employed in the function auto.arima() in R. These 
algorithms are suitable for both seasonal and non-
seasonal data. 
 

Vector Autoregression (VAR) 
The univariate time series model forecasts a series 
considering the unidirectional relationship between the 
variables. However, in the real sense, there are many 
cases where bidirectional relationship exists among the 
group of variables. For instance, the variables we have 
considered in our study: maximum temperature, 
minimum temperature, humidity and cloud coverage are 
interconnected naturally. In such situation, the vector 
autoregression (VAR) model is more suitable which 
modeled as if the variables influence each other equally. 
In this case, all variables are now treated as 
“endogenous”. In our study, we would use the pair-wise 
Granger causality tests proposed by Granger (1969) and 
popularized by Sims (1972), which tests whether an 
endogenous variable can be treated as exogenous. If x 
Granger-cause y and y Granger-cause x it would mean 
that x and y are both endogenous. Therefore, in this 
circumstance a VAR model is required.  
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Vector autoregressions (VARs) were introduced by Sims 
(1980). Following Shahin et al. (2012) and incorporate 
the gaps of this article our study use VAR model for 
forecasting climatic parameters. A p-th order VAR, 
represented VAR(p) for a set of m time series variables 

),,,( 21 ′= mtttt yyyy K , can be written as: 

tptpttt uyAyAyAcy +++++= −−− ...2211  

where the iA ’s are mm× coefficients matrices, c is a 

1×m of constants  and tu  is a 1×m vector of 

disturbances, ).,(...~ ΣoNdiiut  
A VAR(p) model can be written in matrix form as: 
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where,  
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The log-likelihood function is written as follows: 
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The maximum likelihood (ML) estimate of B and Σ are 
written as follows: 
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where, .ˆˆ ttt xByu −=  
The lag length for the VAR(p) model finds out which 
minimizes some model selection criteria. The most 
common criteria are-the Akaike Information Criterion 
(AIC) (Akaike, 1974), Schwarz Information Criteria 
(SIC) (Schwarz, 1978), Hannan-Quinn information 
criteria (HQ) (Hannan and Quinn, 1979), Final 
Prediction Error (FPE) (Akaike, 1969) and Likelihood 
Ratio (LR) statistic (Lutkepohl, 1991). In our study, the 
minimum values of AIC, SC, HQ and FPE have 
provided the number of relative time lags and can be 
computed as follows: 
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The Likelihood Ratio (LR) test is defined as: 

( ),ˆlnˆln pkTLR Σ−Σ=  
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After estimating VAR-model, it is of crucial interest to 
see whether the residuals satisfy the model’s 
assumptions such as, serial correlation, 
heteroscedasticity and normality. Portmanteau test and 
the LM test proposed by Breusch (1978) and Godfrey 
(1978) are most commonly applied for testing the lack of 
serial correlation as well as the multivariate Jarque-Bera 
normality test, (Jarque and Bera, 1987) are applied to the 
residuals of a VAR(p) model. 
 
 
 

Forecasting 
For a given empirical VAR, h-step forecasts can be 
calculated recursively according to 

.ˆˆˆˆ 2211 tphtpthtthttht yAyAyAy −+−+−++ +++= K  

Together with forecasts, impulse response analysis and 
forecast error variance decomposition are other tools for 
investigating the dynamic relationships.  
 

Impulse Responses 
A shock to the j-th variable not only affects itself but 
also transmitted to all of the other response variables 
through the dynamic structure of the vector 
autoregression model. An impulse response function 
draws the consequence of a one-time shock to one of the 
innovations on the present and future observation of the 
response variables. 
 

Variance Decomposition 
Variance decomposition partitions the variation in a 
response variable into the element shocks to the vector 
autoregression. Thus, it provides information about the 
comparative magnitude of each random innovation. 
 
The Forecast Error Variance Decomposition (FEVD) is 
obtained from the orthogonal impulse response 
coefficient matrices; .nΨ  The FEVD facilitates the user 
to investigate the performance of variable j to the h-step 
forecast error variance of variable m. Mathematically, 
the forecast error variance is calculated as follows: 
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Forecast Accuracy Measures 
Finding the best forecast time series model it is pivotal 
to trace out the forecast accuracy of test data. The h-step 
forecast errors can be found as follows:  
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ht
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ˆ
 (Diebold, 2004). 

To evaluate forecast accuracy the following measures 
are frequently used. 

Mean Squared Error (MSE) = ∑
=

+

T

t
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Root Mean Squared Error (RMSE) = ∑
=
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Furthermore, a forecast accuracy measure proposed by 
Hyndman and Koehler (2006) is the Mean Absolute 

Scaled Error (MASE). Our study also incorporates this 
measure to select the best forecasting model.  
 
Results and Discussion 
 

It is vividly evident that the PP test for maximum 
temperature (MAXT), minimum temperature (MINT), 
humidity (HUM) and cloud coverage (CLOUD) are 
stationary at 1 % significance level (Table 1). The ADF 
and KPSS tests also reveal that all the climatic 
parameters are stationary. 
 

Table 1. Unit root test for time series MAXT, MINT, HUM and CLOUD 
 

Level First Difference Variable ADF PP KPSS ADF PP KPSS 
MAXT -3.288** -7.720*** 0.808*** -28.260*** -23.119*** 0.151*** 
MINT -3.204** -4.740*** 0.283*** -20.023*** -17.759*** 0.119*** 
HUM -2.643* -6.328*** 0.655** -21.074*** -45.906*** 0.154* 

CLOUD -4.289*** -4.797*** 0.430** -17.556*** -17.943*** 0.078** 

 

Note: ***, ** and * represent the statistical significantat1%, 5% and 10% levels, respectively. The Augmented Dickey-Fuller (ADF) and the 
Phillips-Perron (PP) tested the null hypothesis of that the relevant series contains a Unit root I(1) against the alternative that it does not, while the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tested the null hypothesis that the series are I(0). 
 

The best-fit models with lowest AIC, AICc, BIC and 
estimated error variance for maximum, minimum 
temperature, humidity and cloud coverage are 
presented in Table 2. The best-fit models for MAXT, 

MINT, HUM and CLOUD are: SARIMA 
(2,0,1)(1,0,0)[12], SARIMA (5,0,4)(0,0,2)[12], 
SARIMA (5,0,0)(2,0,0)[12], SARIMA (5,0,1) (0,0,2) 
[12], respectively. 

 

Table 2. The best-fit SARIMA models along with different model selection criteria 
 

Variables Model AIC AICc BIC Estimated for  
MAXT SARIMA (2,0,1)(1,0,0)[12] 1319.9 1320.09 1344.47 1.081 
MINT SARIMA (5,0,4)(0,0,2)[12] 1592.56 1593.40 1645.80 2.008 
HUM SARIMA (5,0,0)(2,0,0)[12] 2296.30 2296.63 2329.05 9.938 

CLOUD SARIMA (5,0,1)(0,0,2)[12] 1044.04 1044.54 1085.00 0.5933 
 

Considering the model for maximum temperature the 
autoregressive parameters  and  were estimated 
to be -0.0423 (SE, 0.4595), 0.1592 (SE, 0.1291), 
respectively, and the moving average parameter  was 
0.3074 (SE, 0.4654) as well as the seasonal component 

 was 0.8831 (SE, 0.0225). Similarly, the model 
for minimum temperature the autoregressive 
parameters  and  were estimated to 
be -0.2864 (SE, 0.0566), 0.4140 (SE, 0.0527), 0.3200  
(SE, 0.0494), -0.2116  (SE, 0.0550),  -0.6502 (SE, 
0.0490) respectively, and the moving average 
parameter and  were 1.0673 (SE, 0.0388), 
0.2524 (SE, 0.0525), -0.6606 (SE, 0.0495), -0.7987 
(SE, 0.0341) as well as the seasonal components 

and  were 0.5079 (SE, 0.0519) and 0.3947 
(SE, 0.0512), respectively. Furthermore, the model for 

humidity the autoregressive parameters 
 and  were estimated to be -0.448 

(SE, 0.053), -0.3280 (SE, 0.0579), -0.2961 (SE, 
0.0560), -0.1263 (SE, 0.0527), -0.1190 (SE, 0.0473), 
respectively, and the seasonal components  and 

 were 0.5189 (SE, 0.0471) and0.3096 (SE, 
0.0469), respectively. Finally, the model for cloud 
coverage the autoregressive parameters 

 and  were estimated to be 
0.9051(SE, 0.0708), -0.1028 (SE, 0.0706), -0.1469 (SE, 
0.0642), -0.1007 (SE, 0.0633), -0.2146 (SE, 0.0556), 
respectively, and the moving average parameter  was 
-0.4765 (SE, 0.0588) as well as the seasonal 
components  and  were 0.1557 (SE, 0.0505) 
and 0.1069 (SE, 0.0424), respectively. 
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Fig. 1. Normal Q-Q plot for residuals of SARIMA model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Histogram for residuals of SARIMA model 
 
After estimating the parameters of these models, we 
assessed the adequacy by analyzing their residuals. 
Figure 1 and 2 show the Q-Q plot and histogram for 
residuals. Both figures represent that the standardized 
residuals for the models approximated nomal 
distribution. In addition, the Kolmogorov-Smirnov test 
gives no reason to reject the assumption that 
thedistribution of residuals is normal as well as the 
Ljung–Box test ensures that there is no autocorrelation 
in the residuals (p> 0.10) for each fitted model as shown 
in Table 3. Thus, we can say the SARIMA models as 
shown in Table 2 fit the data very well.  
 
Table 3. The Ljung–Box and Kolmogorov- Smirnov 

test for residuals series of SARIMA models 
 

Series of residuals LB test 
value  

p-
value 

KS test 
value p-value

Residuals of MAXT 1.2325 0.2669 0.0397 0.4866 
Residuals of MINT 1.4166 0.2340 0.0432 0.3783 
Residuals of HUM 0.2605 0.6098 0.0224 0.9794 
Residuals of CLOUD 0.1718 0.6783 0.0403 0.4667 

To trace out the endogeneity of the variables the Granger 
causality test was used. The Table 4 indicates 
bidirectional causality among the climatic parameters. 
We know that, if X (say) is granger cause of Y (say) and 
Y (say) is granger cause of X (say) is called bidirectional 
causality between X (say) and Y (say). Hence, the 
Granger causality test suggests that there is bidirectional 
causation between all variables. 
 

The sequential modified Likelihood Ratio test statistics 
(LR), Final Prediction Error (FPE), Akaike Information 
Criteria (AIC), Schwarz Information Criteria (SC) and 
Hannan-Quinn information criteria (HQ) listed in Table 
5 were used to select the order of VAR model. The LR 
statistics, FPE, AIC and HQ indicate that, the appropriate 
lag order of VAR is 9 but SC is 5. Ivanow & Kilian, 
(2001) suggest, in the context of VAR models, that AIC 
tends to be more accurate with monthly data. Therefore, 
our study chose lag length 9 of VAR model on the basis 
of LR, FPE, AIC and HQ criteria. Figure 3 shows the 
actual, fitted and residual of VAR(9) model of these 
variables in which the fitted values are presented by dot 
lines. 
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Table 4. Pair-wise Granger causality test for MAXT, MINT, HUM and CLOUD 
 

Granger test/lags 1 2 3 4 5 
MINT does not Granger Cause MAXT 7.964*** 154.946*** 129.212*** 110.113*** 96.601*** 
MAXT does not Granger Cause MINT 32.329*** 26.550*** 74.931*** 87.219*** 66.932*** 
      
HUM does not Granger Cause MAXT 33.327*** 76.433*** 66.398*** 62.100*** 50.139*** 
MAXT does not Granger Cause HUM 299.496*** 133.374*** 76.054*** 50.404*** 37.488*** 
      
CLOUD does not Granger Cause MAXT 5.516** 164.455*** 148.145*** 122.012*** 102.509*** 
MAXT does not Granger Cause CLOUD 72.858*** 41.689*** 21.702*** 11.508*** 7.884*** 
      
HUM does not Granger Cause MINT 89.566*** 8.882*** 36.401*** 42.169*** 30.266*** 
MINT does not Granger Cause HUM 282.711*** 114.629*** 60.390*** 51.976*** 42.124*** 
      
CLOUD does not Granger Cause MINT 27.493*** 93.359*** 113.602*** 117.494*** 76.482*** 
MINT does not Granger Cause CLOUD 9.880*** 38.568*** 12.059*** 7.055*** 6.673*** 
      
CLOUD does not Granger Cause HUM 213.796*** 81.302*** 37.530*** 23.920*** 22.395*** 
HUM does not Granger Cause CLOUD 156.670*** 33.037*** 11.842*** 4.0769*** 3.331*** 

 

Note: *** and ** represent the statistical significant at 1% and 5% levels, respectively. 
 

 

 

 

 

 

 

 
 

Fig. 3. Actual, fitted and residual plot for MAXT, MINT, HUM, and CLOUD of VAR (9) model 
 
Table 5. Various selection criteria for lag order of VAR 
 

 Lag LogL LR FPE AIC SC HQ 
0 -4178.614 NA   256.709  16.899  16.933  16.913 
1 -3266.008  1806.777  6.857  13.277  13.447  13.343 
2 -3010.724  501.283  2.608  12.310  12.616  12.430 
3 -2913.696  188.960  1.880  11.983  12.424  12.156 
4 -2837.639  146.891  1.475  11.740  12.318  11.967 
5 -2778.269  113.701  1.238  11.564   12.278*  11.845 
6 -2731.536  88.745  1.094  11.441  12.290  11.774 
7 -2691.651  75.097  0.993  11.344  12.329  11.731 
8 -2665.716  48.413  0.954  11.304  12.425  11.744 
9 -2631.398   63.505*   0.886*   11.229*  12.487   11.723* 

 

Note: * indicates lag order selected by the criterion 
           LR: sequential modified LR test statistic (each test at 5% level), FPE: Final prediction error 
           AIC: Akaike information criterion,  SC: Schwarz information criterion 
           HQ: Hannan-Quinn information criterion 
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Fig. 4. Normal Q-Q plot for residuals of VAR(9) model 
 

The diagnostic checking of the selected VAR(9) model 
had performed based on the residuals. In our study for 
testing the lack of serial correlation and normality in 
residuals of VAR(9) model we used the Portmanteau 
test and the multivariate Jarque-Bera  test. The 
Portmanteau test ensures that there is no serial 
correlation in the residuals as well as the multivariate 
Jarque-Bera test shows that the residuals of the VAR(9) 
model are normally distributed as shown in Table 6. In 
Figure 4, the approximately straight line of Q-Q plot of 
the residuals series indicates the normal distribution. 
And the histogram of residuals series shown in Figure 5 

to Figure 8 respectively obtained from model VAR(9) 
suggest that the shocks may be roughly normally 
distributed. Thus, the dynamics of the system are fully 
captured. 
 
Table 6. Portmanteau test and Multivariate Jarque-

Bera test for residuals series of VAR(9) 
 

Portmanteau 
 

Statistic 
p-value 

Jarque-Bera 
 

Statistic 
p-value 

129.38 0.1250 12.35 0.1363 
 

 
 
 
 
 

Fig. 5. Line plot and histogram of residuals for MAXT of VAR(9) model 
 

 
 
 
 

Fig. 6. Line plot and histogram of residuals for MINT of VAR(9) model 
 
 
 
 
 
 

Fig. 7. Line plot and histogram of residuals for HUM of VAR(9) model 
 
 
 
 
 
 

Fig. 8. Line plot and histogram of residuals for CLOUD of VAR(9) model 
 
In order to select the best-fit model for forecasting 
climatic variables we used different forecast accuracy 
measures for instance, Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Mean Absolute 
Percent Error (MAPE) and Mean Absolute Scaled Error 
(MASE). Table 7 reveals that the fitted VAR(9) model 
using the train data set have lowest RMSE, MAE, 

MAPE and MASE compared to the SARIMA models. 
Likewise, Table 8 shows that the forecast values for our 
test data set using VAR(9) model have lowest RMSE, 
MAE, MAPE and MASE compared to the SARIMA 
models for selected climatic variables. Based on the 
findings we decided to use the VAR(9) model for 
forecasting climatic variables. 
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Table 7. Comparison of models performance for train dataset from 1972 to 2008 
 

TRAIN MAXT_SARIMA MAXT_VAR MINT_SARIMA MINT_VAR HUM_SARIMA HUM_VAR CLOUD_SARIMA CLOUD_VAR
RMSE 1.0339 0.9024 1.3979 1.1026 3.124 2.5366 0.7624 0.6483 
MAE 0.7963 0.6952 1.1059 0.8533 2.4577 1.9126 0.5948 0.5142 

MAPE 2.6511 2.3168 5.878 4.517 3.0135 2.3489 37.4783 32.808 
MASE 0.9625 0.8404 1.3064 1.008 0.9075 0.7062 0.8514 0.7361 

 

Table 8. Comparison of models performance for test data set from 2009 to 2013 
 
TEST MAXT_SARIMA MAXT_VAR MINT_SARIMA MINT_VAR HUM_SARIMA HUM_VAR CLOUD_SARIMA CLOUD_VAR
RMSE 1.3493 1.2708 4.2913 1.3815 5.4806 2.0465 1.0695 0.683 
MAE 1.1239 1.0652 3.6859 1.0921 4.6837 1.6298 0.8756 0.5111 

MAPE 3.7173 3.4723 20.2409 5.7757 5.8593 2.0126 62.4872 34.5946 
MASE 1.3585 1.2876 4.3542 1.2901 1.7294 0.6018 1.2533 0.7315 
 
We computed the predicted values using the fitted 
VAR(9) model. A simultaneous computation system is 
used in computing these predicted values. The predicted 
values of MAXT, MINT, HUM and CLOUD for 
VAR(9) from January, 2014 to December, 2021 with 
95% confidence interval (CI) are evident in Figure 9. 
On the other hand, Table 9 shows the predicted 
values of these four climatic parameters from January, 
2017 to December, 2021. The forecasted values imply 
that the maximum and minimum temperatures as well 
as humidity exhibit slightly upward trend, on the 
contrary, cloud coverage exhibits slightly downward 
trend. Our findings are consisting with Shahin et al. 
(2012). 
 
As we know, the VAR model is over-parameterized 
systems in which the individual parameters can hardly 
be interpreted meaningfully. For this reason, other 
methods such as Forecast Error Variance 
Decomposi t ion  (FEVD) and Impulse Response 
Function (IRF) are also used. Forecast Error Variance 
(FEV) is used to examine the short-run dynamic 
interactions between the variables. Table 10 represents 

the variance decompositions for the forecast horizons 1, 
6, 12, 18 and 24 months. The response of MAXT to 
MINT, HUM and CLOUD reveal that the MAXT 
appears to be less exogenous in the system which 
explains 71 % of its FEV after 18 months. Likewise, the 
MINT, HUM and CLOUD account for 17%, 2% and 
10%, respectively of the variation in the MAXT. 
Moreover, the response of MINT to MAXT, HUM and 
CLOUD show that the MINT explains 48% of its FEV 
after 18 months. The MAXT, HUM and CLOUD 
explain over 38%, 2% and 12%, respectively of the 
variation in MINT. The response of HUM to MAXT, 
MINT and CLOUD indicate that the HUM explains 54% 
of its FEV after 18 months. The MAXT, MINT and 
CLOUD explain 13%, 30% and 3% of the variation in 
HUM. The response of CLOUD to MAXT, MINT and 
HUM, we see that the CLOUD explains 40% of its FEV 
after 18 months. The MAXT, MINT and HUM explain 
11%, 45% and 5% of the variation in CLOUD. So, the 
dependency suggests that, in short run, the MAXT, 
MINT, HUM and CLOUD are approximately very 
important relationship in future. 
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Table 9. The forecasted values of VAR(9) model from January, 2017 to December, 2021  
 

Climatic 
Parameters 

MAXT 
 

MINT 
 

HUM 
 

CLOUD 
 

Month Year Forecast 95 % CI Forecast 95 % CI Forecast 95 % CI Forecast 95 % CI 
Jan 2017 26.92 (23.38, 30.46) 13.27 (8.02, 18.52) 78.51 (71.12, 85.89) 0.78 (-1.39, 2.95) 
Feb 2017 28.33 (24.75, 31.91) 14.75 (9.40, 20.10) 76.51 (69.09, 83.93) 1.18 (-1.01, 3.37) 
Mar 2017 30.72 (27.13, 34.31) 18.36 (12.98, 23.73) 76.38 (68.92, 83.84) 2.15 (-0.04, 4.35) 
Apr 2017 32.61 (29.00, 36.22) 22.16 (16.77, 27.55) 78.52 (71.03, 86.02) 3.45 (1.25, 5.65) 
May 2017 33.12 (29.47, 36.77) 24.76 (19.32, 30.20) 82.29 (74.78, 89.81) 4.82 (2.61, 7.04) 
Jun 2017 32.55 (28.88, 36.23) 26.02 (20.52, 31.52) 86.24 (78.71, 93.77) 5.98 (3.75, 8.22) 
Jul 2017 31.88 (28.19, 35.57) 26.53 (20.98, 32.08) 88.95 (81.37, 96.53) 6.62 (4.36, 8.88) 

Aug 2017 31.65 (27.96, 35.34) 26.53 (20.97, 32.09) 89.77 (82.13, 97.40) 6.47 (4.19, 8.75) 
Sep 2017 31.51 (27.81, 35.20) 25.50 (19.92, 31.08) 88.90 (81.23, 96.57) 5.50 (3.20, 7.79) 
Oct 2017 30.71 (27.00, 34.43) 22.84 (17.23, 28.46) 86.94 (79.26, 94.62) 3.97 (1.67, 6.27) 
Nov 2017 29.12 (25.39, 32.84) 18.90 (13.26, 24.55) 84.36 (76.67, 92.05) 2.39 (0.08, 4.70) 
Dec 2017 27.55 (23.82, 31.29) 15.24 (9.57, 20.92) 81.46 (73.75, 89.17) 1.26 (-1.08, 3.59) 
Jan 2018 27.18 (23.41, 30.95) 13.68 (7.91, 19.44) 78.67 (70.93, 86.40) 0.86 (-1.50, 3.23) 
Feb 2018 28.44 (24.64, 32.24) 14.96 (9.11, 20.80) 76.78 (69.01, 84.54) 1.22 (-1.16, 3.60) 
Mar 2018 30.60 (26.79, 34.40) 18.26 (12.39, 24.12) 76.68 (68.88, 84.48) 2.16 (-0.23, 4.55) 
Apr 2018 32.38 (28.56, 36.20) 21.89 (16.01, 27.76) 78.71 (70.88, 86.54) 3.43 (1.04, 5.83) 
May 2018 32.98 (29.13, 36.82) 24.54 (18.63, 30.45) 82.27 (74.43, 90.12) 4.78 (2.38, 7.19) 
Jun 2018 32.59 (28.72, 36.46) 25.96 (20.00, 31.93) 86.05 (78.20, 93.91) 5.92 (3.50, 8.35) 
Jul 2018 32.01 (28.13, 35.89) 26.55 (20.54, 32.55) 88.73 (80.83, 96.62) 6.54 (4.10, 8.98) 

Aug 2018 31.71 (27.83, 35.59) 26.47 (20.45, 32.49) 89.63 (81.69, 97.58) 6.40 (3.93, 8.86) 
Sep 2018 31.43 (27.54, 35.31) 25.34 (19.30, 31.37) 88.89 (80.91, 96.86) 5.47 (2.99, 7.94) 
Oct 2018 30.60 (26.70, 34.50) 22.71 (16.65, 28.77) 86.99 (79.01, 94.98) 4.00 (1.52, 6.48) 
Nov 2018 29.13 (25.22, 33.03) 18.98 (12.90, 25.06) 84.42 (76.43, 92.41) 2.48 (-0.01, 4.97) 
Dec 2018 27.73 (23.82, 31.65) 15.55 (9.44, 21.67) 81.54 (73.53, 89.54) 1.36 (-1.15, 3.87) 
Jan 2019 27.41 (23.47, 31.35) 14.04 (7.86, 20.23) 78.82 (70.78, 86.85) 0.94 (-1.59, 3.48) 
Feb 2019 28.53 (24.57, 32.50) 15.15 (8.90, 21.40) 77.02 (68.96, 85.08) 1.26 (-1.29, 3.81) 
Mar 2019 30.50 (26.53, 34.46) 18.18 (11.92, 24.45) 76.94 (68.85, 85.04) 2.17 (-0.39, 4.72) 
Apr 2019 32.18 (28.20, 36.16) 21.65 (15.38, 27.93) 78.87 (70.75, 86.99) 3.42 (0.86, 5.98) 
May 2019 32.85 (28.84, 36.85) 24.34 (18.03, 30.64) 82.25 (74.12, 90.37) 4.75 (2.18, 7.31) 
Jun 2019 32.61 (28.59, 36.63) 25.89 (19.54, 32.24) 85.87 (77.73, 94.01) 5.86 (3.27, 8.44) 
Jul 2019 32.11 (28.08, 36.13) 26.54 (20.15, 32.92) 88.51 (80.33, 96.68) 6.46 (3.85, 9.06) 

Aug 2019 31.75 (27.72, 35.78) 26.41 (20.01, 32.81) 89.49 (81.27, 97.70) 6.32 (3.70, 8.94) 
Sep 2019 31.36 (27.33, 35.40) 25.19 (18.78, 31.61) 88.85 (80.61, 97.09) 5.43 (2.80, 8.06) 
Oct 2019 30.51 (26.46, 34.55) 22.60 (16.17, 29.04) 87.02 (78.77, 95.28) 4.03 (1.40, 6.67) 
Nov 2019 29.14 (25.09, 33.19) 19.06 (12.60, 25.51) 84.47 (76.22, 92.73) 2.56 (-0.09, 5.20) 
Dec 2019 27.89 (23.83, 31.94) 15.83 (9.35, 22.32) 81.61 (73.34, 89.88) 1.46 (-1.20, 4.12) 
Jan 2020 27.60 (23.53, 31.68) 14.38 (7.84, 20.92) 78.96 (70.66, 87.25) 1.02 (-1.66, 3.71) 
Feb 2020 28.62 (24.52, 32.71) 15.34 (8.74, 21.93) 77.24 (68.92, 85.56) 1.31 (-1.39, 4.01) 
Mar 2020 30.41 (26.31, 34.51) 18.13 (11.52, 24.74) 77.18 (68.83, 85.53) 2.18 (-0.53, 4.88) 
Apr 2020 32.00 (27.90, 36.11) 21.45 (14.83, 28.07) 79.01 (70.64, 87.38) 3.40 (0.69, 6.11) 
May 2020 32.72 (28.60, 36.85) 24.14 (17.50, 30.79) 82.22 (73.84, 90.60) 4.70 (1.99, 7.42) 
Jun 2020 32.61 (28.47, 36.75) 25.79 (19.11, 32.47) 85.70 (77.30, 94.09) 5.79 (3.07, 8.52) 
Jul 2020 32.18 (28.03, 36.33) 26.50 (19.79, 33.22) 88.29 (79.87, 96.71) 6.38 (3.63, 9.13) 

Aug 2020 31.79 (27.64, 35.93) 26.34 (19.61, 33.07) 89.33 (80.88, 97.79) 6.25 (3.49, 9.02) 
Sep 2020 31.31 (27.16, 35.46) 25.07 (18.33, 31.81) 88.79 (80.31, 97.28) 5.40 (2.63, 8.17) 
Oct 2020 30.44 (26.28, 34.59) 22.52 (15.76, 29.28) 87.03 (78.54, 95.53) 4.06 (1.28, 6.83) 
Nov 2020 29.16 (24.99, 33.32) 19.14 (12.36, 25.91) 84.52 (76.02, 93.01) 2.63 (-0.15, 5.41) 
Dec 2020 28.02 (23.85, 32.19) 16.09 (9.29, 22.89) 81.69 (73.18, 90.20) 1.55 (-1.25, 4.35) 
Jan 2021 27.77 (23.59, 31.96) 14.68 (7.83, 21.53) 79.10 (70.57, 87.63) 1.10 (-1.71, 3.92) 
Feb 2021 28.69 (24.49, 32.90) 15.51 (8.62, 22.41) 77.45 (68.89, 86.00) 1.35 (-1.48, 4.18) 
Mar 2021 30.34 (26.13, 34.54) 18.10 (11.19, 25.01) 77.39 (68.81, 85.97) 2.19 (-0.65, 5.02) 
Apr 2021 31.85 (27.64, 36.06) 21.27 (14.36, 28.19) 79.13 (70.53, 87.73) 3.38 (0.54, 6.22) 
May 2021 32.61 (28.38, 36.83) 23.96 (17.03, 30.90) 82.19 (73.58, 90.80) 4.66 (1.82, 7.51) 
Jun 2021 32.60 (28.36, 36.84) 25.69 (18.72, 32.66) 85.53 (76.91, 94.15) 5.73 (2.87, 8.59) 
Jul 2021 32.23 (27.99, 36.48) 26.45 (19.45, 33.45) 88.08 (79.44, 96.73) 6.30 (3.43, 9.18) 

Aug 2021 31.81 (27.57, 36.06) 26.26 (19.25, 33.28) 89.18 (80.50, 97.85) 6.19 (3.30, 9.07) 
Sep 2021 31.27 (27.03, 35.52) 24.96 (17.93, 31.98) 88.72 (80.02, 97.42) 5.37 (2.47, 8.27) 
Oct 2021 30.38 (26.13, 34.64) 22.45 (15.41, 29.49) 87.03 (78.32, 95.74) 4.08 (1.18, 6.98) 
Nov 2021 29.18 (24.92, 33.44) 19.22 (12.16, 26.27) 84.55 (75.84, 93.27) 2.70 (-0.21, 5.61) 
Dec 2021 28.14 (23.88, 32.41) 16.33 (9.25, 23.40) 81.76 (73.04, 90.49) 1.64 (-1.28, -4.56) 
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Fig. 9. Combined graphs for forecasted value of VAR(9) model from January, 2014 to December, 2021 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Impulse Response Function (IRF) of VAR(9) model 
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Table 10. Forecast error variance decomposition from VAR(9) model 
 

Variance Decomposition of Period S.E. MAXT MINT HUM CLOUD 
 1  0.955765  100.0000  0.000000  0.000000  0.000000 
   (3.28521)  (2.95435)  (0.82603)  (2.19678) 

 6  1.237626  77.62210  13.83572  0.660667  7.881507 
   (3.46005)  (3.08408)  (0.82443)  (2.78198) 

 12  1.346895  76.71502  12.69670  2.416522  8.171760 
   (3.51713)  (2.61902)  (1.46301)  (2.87685) 

 18  1.545072  70.92688  16.57090  2.143988  10.35823 
   (4.20584)  (3.32864)  (1.41231)  (3.34605) 

 24  1.610875  71.47427  15.96762  2.609971  9.948140 

 
 
 
 
 

MAXT 

   (4.24727)  (3.16717)  (1.66644)  (3.31418) 
 1  1.160670  44.02083  55.97917  0.000000  0.000000 
   (3.35053)  (3.35053)  (0.00000)  (0.00000) 

 6  1.550914  38.03106  52.68526  0.510514  8.773165 
   (3.93963)  (4.23248)  (0.78271)  (2.96563) 

 12  1.774052  42.06277  48.24604  2.009952  7.681233 
   (3.71507)  (3.85989)  (1.49577)  (2.59170) 

 18  2.128424  38.00851  48.15007  2.145228  11.69619 
   (4.12375)  (4.59781)  (1.59523)  (3.51652) 

 24  2.271584  39.30800  46.79828  2.647007  11.24672 

 
 
 
 

MINT 

   (4.25650)  (4.74293)  (1.98735)  (3.50688) 
 1  2.566369  13.33037  26.62007  60.04956  0.000000 
   (2.83844)  (3.20395)  (3.41805)  (0.00000) 

 6  2.990122  12.63723  25.44140  60.94599  0.975382 
   (2.44313)  (3.41816)  (3.71242)  (1.03845) 

 12  3.211491  11.21422  30.19801  57.64619  0.941582 
   (2.25450)  (3.50504)  (3.76045)  (1.06642) 

 18  3.385591  13.05517  30.14660  54.11948  2.678753 
   (2.29803)  (3.52724)  (3.90480)  (1.57692) 

 24  3.529511  12.20190  32.75317  51.75212  3.292815 

 
 
 
 
 

HUM 

   (2.20373)  (3.79307)  (4.05691)  (1.60958) 
 1  0.674497  8.336835  37.32531  0.734979  53.60287 
   (2.37348)  (3.34127)  (0.58528)  (3.26352) 

 6  0.721862  7.848167  39.01908  2.755963  50.37679 
   (2.10494)  (3.49638)  (1.42689)  (3.34524) 

 12  0.822178  10.59961  41.52464  5.282904  42.59285 
   (2.24441)  (3.80533)  (1.82256)  (3.41345) 

 18  0.895591  10.75949  44.83639  4.624898  39.77922 
   (2.36105)  (4.32353)  (1.77007)  (3.95310) 

 24  0.970364  11.57108  46.53612  5.534815  36.35799 

 
 
 
 
 

CLOUD 

   (2.72440)  (4.81661)  (2.31633)  (4.30368) 
 

Note: Cholesky Ordering: MAXT MINT HUM CLOUD 
          Standard Errors: Monte Carlo (50000 repetitions) 
 
Monte Carlo simulation was used to compute the 
response of each variable and standard errors. Our study 
takes into consideration with 50000 repetitions. The 
response in each variable is expressed to one S.D. 
innovation. For one standard deviation increase in the 
shock the graphical representations of the impulse 
response functions are shown in Figure 10. The 
immediate response of MAXT to MINT has a significant 
effect at 5% level with its 4th lag and explains that after 
4 months the MAXT decreases by 0.288770% in 
response to the 0.04719% increase in the shock of 
MINT. Also, the HUM has a significant effect on 
MAXT at 5% level and we see that the MAXT may 
increase 0.117957% in response to the increase of 
0.05717% in the shock of HUM with its 7th lag. 
Likewise, after 5 months the MAXT significantly 
decreases by 0.250462% in response to the increase of 

0.05180% in the shock of CLOUD at 5% level. 
Similarly, we observe that the response of MINT is 
significant to the shock of MAXT, HUM and CLOUD at 
5% level. We see that after 10 months the MINT 
decreases by 0.486623% in response to the increase of 
0.06125% in the shock of MAXT; also after 11 months 
0.139879% increase in MINT corresponds to the 
increase 0.06818% in the shock of HUM. On the other 
hand, when the shock of CLOUD increases of 0.06303% 
the response of MINT significantly decreases by 
0.333300% after 5 months.  
 
Furthermore, we find that the impulse of MAXT, MINT 
and CLOUD exert significant effects on the response of 
HUM at 5% significance level. The response of HUM 
increases of 0.351624% if the shock of MAXT increases 
by 0.13057% after 4 months. Also when the impulse of 
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MINT increases of 0.11680% the response of HUM 
decreases by 0.547854% after 7 months. Besides, the 
overall response of HUM is small, when the shock is 
CLOUD. Finally, we see that the response of CLOUD is 
significant to the shock of MAXT, MINT and HUM at 
5% level. We observe that for 0.03022% increase in the 
shock of MAXT the response of CLOUD decreases by 
0.111212% after 9 months and the reaction of CLOUD 
increase by 0.158626% for 0.02014% increases in the 
impulse of MINT after 12 months. Moreover, it is 
obvious that, when the shock is HUM, the almost overall 
reaction of CLOUD is positive but very small. In 
nutshell, we can say that for the shock of one variable 
does not have a permanent effect on the system. From 
Figure 10, we observe a fluctuated effect (e.g. positive 
and negative) of one response variable for the impulse of 
other variables in future.  
 
Conclusions 
Climate change impacts are global concern throughout 
the world and for that matter of Bangladesh where lives 
and livelihoods mainly rely on agriculture. In addition, 
the country is frequently cited as one of the most 
susceptible countries to climate change because of its 
disadvantageous geographic location; flat and low-lying 
topography; higher density of population; increasing 
poverty level; the dependence of many livelihoods on 
climate sensitive sectors, particularly agriculture and 
fisheries. Many of the anticipated adverse effects of 
climate change, such as higher temperatures, enhanced 
humidity, and shrink cloud coverage, will aggravate the 
existing stresses that already impede development in 
Bangladesh. For that reason, our study endeavours for 
appropriate statistical time series modeling to ensure 
better forecast of four climatic parameters in order to 
mitigate the vulnerabilities and allow enough room to 
farmers to dwindle unwanted consequences of climate 
change, facilitating rational agricultural decisions for 
boosting agricultural productivity. We used univariate 
seasonal autoregressive integrated moving average 
(SARIMA) and multivariate vector autoregression 
(VAR) for modeling and comparing the forecasting 
abilities of the climatic data. The different unit root tests 
of stationarity reveal that maximum temperature, 
minimum temperature, humidity and cloud coverage are 
stationary at level. The pair-wise granger causality tests 
exhibit bi-directional causality among the variables. The 
best-fit SARIMA models with lowest AIC, AICc, BIC 
and estimated error variance for maximum, minimum 
temperature, humidity, and cloud coverage were fitted 
and the diagnostic results confirm the model adequacy.  
Based on different model selection criteria a 9th order 
VAR model was fitted to our data and the diagnostic 
checking of the selected VAR(9)model using the 
Portmanteau test and the multivariate Jarque-Bera  test 
ensure the lack of serial correlation and normality of the 
residuals of climatic parameters. Forecast accuracy 
measures include RMSE, MAE, MAPE and MASE in 
the case of in-sample data over the period 1972-2008 

and out-of-sample data from 2009-2013 show that 
VAR(9) model give better forecast than univariate 
SARIMA model. The FEV decomposition suggests that 
the selected climate variables are important in future 
because they explain the future variation. Together with 
this, the impulse response function tells us the time path 
of one variables response to the shock of others variables 
in future. And finally, the monthly forecasts result using 
VAR(9)  from January 2014 to December 2021 reveals 
that maximum temperature, minimum temperature and 
humidity are slightly increasing while the cloud 
coverage is decreasing minimally. Therefore, proper 
attention has to be taken to reduce environmental 
degradation as priority basis from government’s and 
individual’s perspectives. 
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