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 Pythagorean triples have been known for a long time. Fermat's last 

theorem sets the limit of any two integers summing up to the third, all 

raised to the same power, which, according to the theorem, can never be 

more than 2. After centuries of effort and waiting, Andrew Wiles 

provided a large and complicated proof of this theorem; this article 

provides an elementary one. Mathematical subject classification: 11D41, 

11D45. 

 

Introduction 
 
 

Among the works compiled by Euclid, the related to 

the Pythagorean triangle (Clapham and Nicholson, 

2009; Fitzpatrick, 2008) was one of the most 

prominent and useful. Pythagoras stated that the sum 

of the squares on two arms adjacent to the correct 

angle of a right-angled triangle is equal to the square 

on the hypotenuse. The theorem is one of the most 

ancient mathematical results. Evidence shows that the 

Babylonians and the Chinese knew it 1000 years 

before Pythagoras. (Krantz, 2006) The Egyptians used 

at least one combination of Pythagorean triples, 3, 4, 

and 5, to construct corners of pyramids. For centuries, 

mathematicians were pondering whether this type of 

relationship was possible with powers higher than 2 

over the triplet bases. Fermat's last theorem, 

acceptably conjectured for centuries, states its 

impossibility. Andrew Wiles provided his colossal 

and complicated proof just before the advent of the 

21st century. (Wiles, 1995) We wonder whether 

Fermat himself worked out a proof that he could not 

fit into the margin of Bachet’s translation of 

Diophantus’s Arithmetica. (Krantz, 2006) We provide 

an elementary proof.  

Andrew Wiles proved enough of the Taniyama-

Shimura-Weil conjecture to prove Fermat's Last 

Theorem. The conjecture, which later mathematicians 

after Wiles proved as the modularity theorem, 

appeared around 1955. Gerhard Frey G, in 1984, 

noticed an apparent link between the conjecture and 

Fermat's Last Theorem (Frey G, 1986; Wikipedia 

contributors, 2019; Wiles AJ, 1995). 

Proofs of Fermat's Last Theorem for specific 

exponents date back to the time of Fermat himself, 

who outline a proof for n = 4 by infinite descent, 

alternative proofs given by many, from Bessy (de 

Bessy F, 1676) to Dolan (2011), Euler not missing out. 

In 1770, Leonhard Euler gave a proof for n = 3, but 

his proof required a missing lemma, which was later 

proven and provided by other mathematicians. 

(Friedberg R, 1994) Independent and alternative 

proofs were published later. Independent and 

alternative proofs for n = 5,6,7, etc., were published 

over the years. (Wikipedia contributors, 2018). 

Andrew Wiles's proof of Fermat’s Last Theorem is 

massive in size; the mathematics used in it is 

inaccessible to the understanding of generally 

educated people and requires most modern 

mathematics developed only in the later part of the 

twentieth century. Earlier proofs for specific 

exponents should have given rise to the thought that 

the possibility of a solution to Fermat's equation has 

ceased from n = 3 onwards; we rearranged and 
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modified the equation to show why that is so general. 

In contrast to Andrew Wiles' proof, our method uses 

elementary mathematics to explore and understand 

most of the general educated public for the first time, 

leaving no doubt about Fermat's Last Theorem. 

Proof of Fermat’s Last Theorem 

Theorem 2.1. Fermat’s last theorem (Krantz, 2006; 

Wikipedia contributors, 2018; 2019) states that if 

x; y; z; n are positive integers then 

 xn + yn ≠ zn when n > 2 . 

Proof. Definitely if n = 0, LHS = 1 + 1 = 2 will always 

be greater than RHS = 1. If n = 1, LHS will be equal 

to RHS when the sum of integers on LHS is put on 

RHS. 

Let us assume, n and x < y < z are positive integers, 

and in certain conditions,  

xn + yn = zn                            (2.1) 

We know from the binomial theorem, 

(x + y)n = xn + Cn
1xn−1 … + Cn

rxn−r … + ynSo 

for n > 1, we have, 

(x + y)n > xn + yn 

Or, 

(x + y)n > zn So, 

𝑥 + 𝑦 > 𝑧      (2.2)                                               

2𝑦 > 𝑥 + 𝑦 > 𝑧   (2.3)                                   

Also, for the positive integers, 

𝑧 − 𝑥 > 𝑧 − 𝑦 ≥ 1    (2.4) 

𝑧 − 𝑥 ≥ 2        (2.5) 

As from (2.1), we have  𝑥𝑛 = 𝑧𝑛 − 𝑦𝑛 = (𝑧 −

𝑦)(𝑧𝑛−1 + 𝑧𝑛−2𝑦 + 𝑧𝑛−3𝑦2 … + 𝑦𝑛−1), for showing 

lower bound of the solution to (2.1), we get, 

𝑥 ≥ 1                                    (2.6) 

𝑦 ≥ 2      (2.7) 

𝑧 ≥ 3 (2.8) 

Again rearranging (2.1), we have,  

𝑦𝑛 = 𝑧𝑛 − 𝑥𝑛 = (𝑧 − 𝑥)(𝑧𝑛−1 + 𝑧𝑛−2𝑥 + 𝑧𝑛−3𝑥2 …

+ 𝑥𝑛−1) 

= (𝑧 − 𝑥)𝑧𝑛−1(1 +
𝑥

𝑧
+ ⋯ +

𝑥𝑛−1

𝑧𝑛−1)Or, 

ln𝑦𝑛 = ln ((𝑧 − 𝑥)𝑧𝑛−1 (1 +
𝑥

𝑧
+ ⋯ +

𝑥𝑛−1

𝑧𝑛−1
)) 

= ln(𝑧 − 𝑥) + ln𝑧𝑛−1 + ln (1 +
𝑥

𝑧
+ ⋯ +

𝑥𝑛−1

𝑧𝑛−1
) 

Or, 

1 =
ln(𝑧−𝑥)

𝑛ln𝑦
+

𝑛−1

𝑛
∙

ln𝑧

ln𝑦
+

ln(1+
𝑥

𝑧
+⋯+

𝑥𝑛−1

𝑧𝑛−1)

𝑛ln𝑦
  (2.9)       

Applying the findings from the previous inequalities 

in (2.9), we get ln(𝑧 − 𝑥) ≥ ln2 ≥ 0.693 and  

ln (1 +
𝑥

𝑧
+ ⋯ +

𝑥𝑛−1

𝑧𝑛−1) > ln1 > 0. So, 
ln(𝑧−𝑥)

𝑛ln𝑦
> 0 and 

ln(1+
𝑥

𝑧
+⋯+

𝑥𝑛−1

𝑧𝑛−1)

𝑛ln𝑦
> 0. Also, 1 <

ln𝑧

ln𝑦
<

ln2𝑦

ln𝑦
= 1 +

ln2

ln𝑦
 . 

 As we stated at the beginning of this proof section, 

when 𝑛 = 0, the equation is not possible; when 𝑛 =

1, we get 
𝑛−1

𝑛
= 0; when 𝑛 = 2, we get  

𝑛−1

𝑛
=

1

2
; with 

the increase of n, we get an increasing 
𝑛−1

𝑛
→ 1. But 

Fermat's Last Theorem was proven for 𝑛 = 3   first by 

Euler. (Friedberg, 1994; Ribenboim, 2009; 

Hellegouarch, 2001) So (2.9) is not possible for 𝑛 =

3; consequently, with increasing  
𝑛−1

𝑛
, equation (2.9) 

is not possible for 𝑛 > 3. This should generally prove 

the Fermat's Last Theorem for any 𝑛 > 2.  

But we would like to make it look clearer. It would be 

better for understanding the equation if we restrict 𝑛 

to one place only, and show other terms falling within 

ranges. For clarity and brevity, we introduce a few 

more notations. If, 

1 <
ln𝑧

ln𝑦
= 1 + 𝛿 <

ln2𝑦

ln𝑦
= 1 +

ln2

ln𝑦
 

We have 

0 < 𝛿 <
ln2

ln𝑦
<

0.693

ln𝑦
 Also, when 

1 > 𝛼 > 0 > −𝛼 >
ln (1 −

1

2
)

ln𝑦
= −

0.693

ln𝑦
 

So that, 

ln(2𝑦 − 𝑥)

ln𝑦
=

ln𝑦

ln𝑦
+

ln2

ln𝑦
+

ln (1 −
𝑥

2𝑦
)

ln𝑦

= 1 +
0.693

ln𝑦
− 𝛼 >

ln(𝑧 − 𝑥)

ln𝑦
= 𝜂

≥
ln2

ln𝑦
> 𝛿 > 0 

And, 
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1 =
ln𝑦

ln𝑦
=

ln
2y

2

ln𝑦
>

ln
z

2

ln𝑦
≥

ln
z

z−x

ln𝑦
=

ln
1

1−
x

z

ln𝑦

>
ln (1 +

𝑥

𝑧
+ ⋯ +

𝑥𝑛−1

𝑧𝑛−1)

lny
= 𝜖 > 0 

where we have a natural logarithm of partial geometric 

series in the numerator, which is less than its infinite 

series. Rewriting (2.9), we get, 

1 =
𝑛 − 1

𝑛
∙ (1 + 𝛿) +

1

𝑛
∙ (𝜂 + 𝜖) 

Or,  

1 = 1 + 𝛿 +
1

𝑛
∙ (𝜂 + 𝜖 − 1 − 𝛿)       (2.10)          

To satisfy equation (2.10), we must have 
1

𝑛
∙ (𝜂 + 𝜖 −

1 − 𝛿) negative to cancel out 𝛿. 

With the increase in 𝑛, we have to decrease 
1

𝑛
→ 0, 

gradually, rendering its effect negligible in equation 

(2.10) for the canceling out purpose. When Fermat's 

Last Theorem had already proven for 𝑛 = 3, the 

equation (2.10) is not possible for 𝑛 = 3; consequently, 

with 
1

𝑛
→ 0, equation (2.10) is not further possible for 

𝑛 > 3. This proves the Fermat's Last Theorem 

generally for any 𝑛 > 3. □  

Conclusion 

For millennia, Pythagoras's theorem has remained one 

of the most useful propositions of geometry in 

practical life, e.g., for making corners, measuring 

distances on earth and space, and graphs of analytic 

geometry helping its progression. For centuries, 

Fermat's last theorem remained an enigma until 

Andrew Wiles declared its large, complicated, 

fascinating proof. This article provides an elementary 

proof of Fermat’s last theorem. 
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