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 With its distinctive geography and varied climatic conditions, Muktagacha in 

Mymensingh, Bangladesh, is well-suited for wind energy exploration. This 

study investigates wind speed characteristics and the potential for generating 

wind power in the area from 2019 to 2023. The research uses statistical 

methodologies to develop probability density functions through Weibull and 

Rayleigh distributions for monthly wind data analysis. The Weibull model 

provides a more precise estimation of power density, validated by higher R² 

and lower RMSE values. Wind speed data (2019–2023) from Muktagacha, 

Bangladesh, were analyzed using Weibull and Rayleigh distributions. Model 

performance was evaluated using R², RMSE, and χ². The Weibull model 

provided a better fit for wind speed distributions (R² = 0.998), while the 

Rayleigh model estimated higher power densities, especially during high 

wind months like June. Year 2022 showed the highest wind energy potential, 

with a power density of 135.66 W/m². The results offer essential insights into 

wind energy capabilities in Muktagacha, supporting decision-makers and 

emphasizing the importance of renewable energy in the region. 
 

Introduction 

Rain falls from the sky, reviving the lifeless earth 

and bringing it back to life. This remarkable 

transformation is a clear sign of natural energy. This 

highlights the life-giving power of rain and its 

essential role in sustaining the natural balance, 

emphasizing the importance of conserving natural 

resources (Redclift, 2002). The principles derived 

from this verse advocate for the responsible 

utilization of the earth's resources and align with 

promoting renewable energy initiatives (Habib et al., 

2024a). The rapid advancements in renewable energy 

technologies are transforming the global energy 

landscape, providing valuable insights into 

technological innovations and emerging trends (Eze 

et al., 2023). Renewable energy sources, including 

solar, hydroelectric, geothermal, and wind power, are 

continually advancing, offering viable solutions to 

the challenges posed by climate change and 

sustainable development. These advancements 

highlight a promising future for renewable energy as 

it becomes an integral component of global 

sustainability initiatives (Gielen et al., 2019). 

Renewable technologies are pivotal in reducing 

greenhouse gas emissions and provide a 

comprehensive approach to the evolving clean 

energy sector. Notable innovations include 

developments in energy storage systems, innovative 

grid technologies, and the seamless integration of 

renewables into existing energy infrastructures. The 

shift towards renewable energy has significant 

environmental and public health benefits (Islam et 

al., 2023). By minimizing air (Aditya et al., 2022) 

and water pollution associated with fossil fuel use, 

renewable energy technologies contribute to 
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improved air quality and enhanced public health 

outcomes. This transition aligns with the principles 

of responsible stewardship of natural resources, as 

emphasized in various cultural and philosophical 

texts. Ongoing advancements in renewable energy 

highlight the potential for a sustainable future where 

clean energy solutions address global environmental 

challenges and enhance social well-being. Among 

renewable energy sources, wind energy stands out 

due to its abundance, minimal ecological impact, 

relatively higher efficiency, and capability to 

generate power even during nighttime (Dyrholm et 

al., 2023). The wind energy sector is rapidly 

evolving, driven by innovations such as larger and 

more efficient wind turbines, advancements in 

offshore wind farms, and the integration of digital 

technologies (Giebel and Kariniotakis, 2017). The 

Weibull probability distribution often models wind 

patterns at specific locations (Keyhani et al., 2010; 

Akpinar and Akpinar, 2005; Al-Buhairi, 2006). In 

Mymensingh, Bangladesh, several studies have 

been undertaken to optimize wind power generation 

(Habib, 2022, Jacobson, 2018; Habib et al., 2024b; 

Rahman et al., 2024; Mazumder et al., 2019; Rashid 

et al., 2018a), focusing on the shape parameter (k) 

and scale parameter (c) of the Weibull distribution 

in their analyses.   

Extensive research has explored optimization 

techniques using deep learning (Wang et al. , 2021; 

Hong and Rioflorido, 2019; He et al., 2023), data 

processing strategies (Liu and Chen, 2019), and a 

strong focus on decision-making processes (Habib  

et al., 2022). Additionally, numerous studies have 

examined survey-based methods (Marugan et al., 

2018), simulation techniques (Islam et al., 2022a; 

Rahaman  et al., 2015; Noman et al.,  2023; Rashid 

et al., 2018b; Sinha and Chandel, 2015), 

applications of game theory (Habib, 2019; Habib et 

al., 2020), and various other related approaches 

(Yan and Ouyang, 2019; Wang  et al., 2019a; 

Giebel  et al., 2017; Wang  et al., 2019b; Lipu et al., 

2021) worldwide. Physical models, such as 

Numerical Weather Prediction (NWP) and Weather 

Research and Forecasting (WRF), often incorporate 

environmental conditions (Hanifi et al., 2020). 

These factors include surface roughness, terrain, 

wake effects, humidity, pressure, and temperature 

(Zhang et al., 2019; Du et al. 2019). Advanced 

mathematical models are subsequently applied to 

forecast wind speed characteristics, using these 

variables specific to the area. Wind speed data is 

then utilized to estimate wind power output through 

the turbine's wind power curve. This forecasting 

approach does not require training with historical 

data but relies on physical data inputs. Research has 

demonstrated that physical prediction models often 

outperform traditional statistical models in medium-

term and long-term wind speed predictions, albeit at 

the expense of higher computational complexity and 

resource demands (Yuan et al., 2019). Conversely, 

statistical models utilize historical data to identify 

linear and non-linear relationships between weather 

conditions and power output (Wang et al. 2019). 

These relationships enable predictions for future 

power generation. While statistical models are 

easier to develop and require fewer computational 

resources than physical ones, they tend to produce 

less accurate forecasts over longer time horizons. 

This study conducts a detailed analysis of wind 

speed data collected in Muktagacha (24.7660° N, 

90.2665° E), Mymensingh, Bangladesh, for the 

period between 2019 and 2023 (worldweather and 

bmd.gov.bd), utilizing continuous probability 

distributions such as Weibull and Rayleigh. The 

research identifies a critical gap in previous 

studies, which often overlooked localized data in 

the analysis of wind energy systems. 

Consequently, the primary objective of this paper 

is to statistically analyze the wind speed data to 

assess the potential for wind energy production in 

Muktagacha, Mymensingh.  

This paper is organized into different subsections, 

such as Section 2, Section 3, Section 4, and 

Section 5, which describe the theoretical analysis, 
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results and discussion, machine learning-based 

model, and conclusion, respectively.  

Theoretical analysis 

Analysis of wind speed using frequency 

distribution 

The wind speed distribution and its functional form 

play a pivotal role in wind energy research. Weibull 

and Rayleigh distributions are commonly employed 

to model wind speed data for specific locations and 

periods. The probability density function of the 

Weibull distribution is mathematically expressed as 

(Boeker and Grondelle, 1999), 

𝑓( 𝑣)

= (
𝑘

𝑐
) (

𝑣

𝑐
)

𝑘−1

exp [− (
𝑣

𝑐
)

𝑘

]                                       (1) 

Where f(v) is the wind speed probability of v, c and k 

are the scaling parameters and shape factors of the 

Weibull distribution, respectively.   

The cumulative probability function that relies on the 

Weibull distribution (Ramirez and Carta, 2005; 

Celik, 2003; Algifri, 1998) can be expressed as 

follows, 

𝐹( 𝑣) = 1 − exp [− (
𝑣

𝑐
)

𝑘

]                                         (2) 

The Weibull distribution becomes identical to the 

Rayleigh distribution when the shape parameter (k) 

equals 2. Thus, the Rayleigh distribution can be 

expressed from Equation 1 using k=2 as,  

𝑓( 𝑣)

= (
2𝑣

𝑐2
) exp [(−

𝑣

𝑐
)

𝑘

]                                                   (3)                  

The mean value (μm) and standard deviation (σ) of the 

Weibull distribution are calculated as, 

𝑣𝑚

= 𝑐Γ (+ 
1

𝑘
)                                                                    (4) 

and  

𝜎

= 𝑐 [Γ (1 +
2

𝑘
) 

− Γ2 (+
1

𝑘
)]

0.5

                                                            (5) 

Where Γ () is the gamma function. 

Two key factors, such as wind speed and the 

direction that carries the maximum energy, are most 

probable in estimating the wind energy. The most 

probable wind speed represents the wind speed that 

occurs most frequently in the distribution of wind 

probability, which is expressed as follows, 

𝑣𝑀𝑃

= 𝑐 (
𝑘 − 1

𝑘
)

1/𝑘

                                                           (6) 

The wind speed carrying the maximum energy can 

be represented as follows, 

𝑣𝑀𝑎𝑥𝐸

= 𝑐 (
𝑘 + 2

𝑘
)

1/𝑘

                                                             (7) 

Concerning the Lognormal distribution, parameters: 

μ and σ (log-scale mean and standard dev) 

 

 The Gamma Distribution shows Parameters: α 

(shape), θ (scale), 

  

The literature provides various methods for 

evaluating the Weibull distribution parameters, 

including the standard deviation method, graphical 

method, maximum likelihood method, moment 
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method, energy pattern factor method, and power 

density method. The standard deviation method is 

widely regarded as effective for determining the 

shape parameter (k) and scale parameter (c) values. 

Standard deviation method  

To calculate the parameters of the Weibull 

distribution, the following equations can be used,  

𝑘

= (
𝜎

𝑣𝑚
)−1.086                                                                  (8) 

𝑐

=
𝑣𝑚

Γ(1 +
1

𝑘
)

                                                                     (9)                 

Variation of wind speed with height 

The value of wind speed changes with the variation 

of heights above the ground. The widely exploited 

equation for expressing the wind speed variation with 

height is,  

𝑣1

𝑣2

= (
ℎ1

ℎ2
)𝑝                                                                       (10) 

Where v1 and v2 are average wind speeds for heights 

h1 and h2. The exponent 'p’ value depends on 

atmospheric stability and surface roughness.  

Wind power density 

Wind power speed through the blade sweep area (A) 

is expressed in the following equation and is found to 

rise as the cube of its velocity. 

𝑃(𝑣)

=  
1

2
𝜌𝐴𝑣3                                                                      (11) 

Where ρ is the average air density (1.225 kg/m³, 

based on standard atmospheric conditions at sea level 

and at a temperature of 15 °C), several constraints, 

such as altitude, air pressure, and temperature, are 

constituents of wind power density. 

The expected wind power density per unit area for 

monthly or annual wind data can be found by 

utilizing the Weibull probability density function as 

follows, 

𝑃𝑤

=
1

2
𝜌𝑐3Γ (1 +

3

𝑘
)                                                    (12) 

The Weibull scale parameter (m/s) is represented as,  

𝑐

=
𝑣𝑚

Γ(1 +
1

𝑘
)

                                                                 (13) 

When 𝑘 = 2, from equation (9), the model of 

Rayleigh power density can be expressed as, 

𝑃𝑅

=
3

𝜋
𝜌𝑣𝑚

3                                                                     (14) 

𝑃𝑚,   𝑅 is the wind power density for a probability 

density distribution which can be represented as, 

𝑃𝑚,   𝑅

= ∑ [
1

2
𝜌𝑣𝑚

3𝑓(𝑣𝑗)]                                           (15)

𝑛

𝑗=1

 

Errors that occurred during the calculation of power 

densities are found by utilizing probability 

distributions, and the error can be determined by 

exploiting the following expression,  

Error% (%)

=
Pw ,   R − Pm,    R

Pm,    R
                                             (16) 

Where Pw,   R is the average power density obtained 

from the Weibull or Rayleigh distribution. 

The yearly average error in the power density, 

calculated utilizing the Weibull function, is obtained 

from the following expression, 

Error% (%)

=
1

12
∑

Pw ,   R − Pm,    R

Pm,    R

12

i=1

                                          (17) 

 

The statistical analysis of the distributions 

To obtain the performance of Weibull as well as 

Rayleigh distributions, the square of the correlation 

coefficient (𝑅2), chi-square (𝜒2 ), and root mean 



  
 

 Hasan and Habib/J. Bangladesh Acad. Sci. 49(1); 123-135: June 2025 

127 

 

square error (RMSE) are used. These parameters are 

determined utilizing the following expression, 

𝑅2

=
∑ (𝑦𝑖 − 𝑧𝑖)2 − ∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1
𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑧𝑖)2𝑁
𝑖=1

                      (18) 

 

𝜒2

=
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑁 − 𝑛
                                                       (19) 

RMSE

= [
1

N
 ∑(𝑦𝑖

𝑁

𝑖=1

− 𝑥𝑖)2]

1/2

                                                                 (20)         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where yi, zi, xi, N, and n are the ith measured data 

point, mean value, predicted data utilizing either 

Weibull or Rayleigh distributions, total number of 

observations,  

and constraints, respectively. Thus, as the value of the 

R2 is maximized and the values of RMSE and 𝜒2 are 

minimized. The probability distribution that best fits the 

data is selected using these parameters.  

Results and discussion 

Wind speed data from Muktagacha, Mymensingh, 

Bangladesh, collected between 2019 and 2023 at a 

height of 10 meters, were analyzed using various 

statistical techniques. A summary of the key findings 

is presented in Table 1 below: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The monthly mean wind speeds and their corresponding standard deviations in Muktagacha 

between 2019 and 2023. 

Years 2019 2020 2021 2022 2023 Whole year 

Parameter 𝒗𝒎 σ 𝒗𝒎 σ 𝒗𝒎 σ 𝒗𝒎 σ 𝒗𝒎 σ 𝒗𝒎 σ 

January 1.75 0.589 2.056 0.817 1.639 0.597 2.167 0.444 2.083 0.5 1.939 0.589 

February 2.278 0.981 2.139 0.861 2.111 0.5 2.444 0.569 2.306 0.639 2.256 0.71 

March 2.472 1.236 2.278 1.453 2.611 0.819 2.75 0.611 2.778 1.194 2.578 1.063 

April 2.806 1.158 2.944 1.156 3.167 0.681 3.75 0.667 2.889 0.792 3.111 0.891 

May 3.75 1.044 3.25 1.225 2.806 0.6 3.278 0.569 2.806 0.694 3.178 0.827 

June 3.111 1.089 3.472 0.911 3.556 0.594 3.75 0.5 3.694 0.653 3.517 0.749 

July 3.722 1.019 3.472 0.839 3.278 0.528 2.694 0.486 3.194 0.625 3.272 0.699 

August 3.139 0.931 3.583 0.908 3 0.472 2.917 0.583 3 0.597 3.128 0.698 

September 2.806 0.908 2.806 0.931 2.167 0.514 2.5 0.472 2.611 0.694 2.578 0.704 

October 2.056 1 2.028 0.725 2.111 0.417 2.083 0.486 2.25 0.528 2.106 0.631 

November 1.778 0.667 1.861 0.681 1.861 0.347 1.833 0.389 1.861 0.444 1.839 0.506 

December 2.028 0.833 1.889 0.636 2.139 0.486 1.861 0.403 1.667 0.472 1.917 0.566 

Yearly 2.641 0.955 2.648 0.928 2.537 0.546 2.669 0.515 2.595 0.653 2.618 0.719 
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Table 1 (worldweather and bmd.gov.bd) provides the 

calculated monthly mean wind speeds and their 

standard deviations. The analysis indicates that the 

highest wind speeds were recorded in April, while 

the lowest wind speeds occurred in July. Fig. 1 

illustrates the monthly mean wind speeds for 

Muktagacha from 2019 to 2023, showcasing a 

consistent wind speed pattern across the years. 

Fig. 2 and Fig. 3 depict the monthly probability 

density and cumulative distributions, respectively, 

based on Muktagacha’s time-series data for the entire 

year. These distributions demonstrate that both curves 

exhibit a similar trend in wind speed. Additionally, 

Fig. 4 presents the annual data's probability density 

and cumulative distribution, providing a comprehensive 

view of the wind speed patterns over the year. 

Table 2 presents the monthly values of the Weibull 

parameters k and c from 2019 to 2023, along with their 

yearly averages. Both parameters display notable 

fluctuations across the months. For instance, the highest k 

values are generally observed in July, while the highest c 

values also occur in July, reflecting increased wind speed 

intensity or variability during these months. The yearly 

averages of the parameters reveal a general upward trend 

over the years, with some variations. Specifically, the 

average k values range from 3.02 to 5.97, while the 

average c values vary from 2.754 to 2.96 yearly.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. The monthly wind speed of Muktagacha, 2019-

2023. 

 

 

Fig 4. The wind speed probability density and 

cumulative distributions for the year were 

derived from the measured data from the 

Muktagacha. 

 

Fig 2. The probability distributions of the 

monthly wind speeds were based on the time 

series data from Muktagacha. 

 

Fig 3. The cumulative probability 

distributions for the monthly wind speeds 

over the year are based on data from 

Muktagacha. 
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Table 3. Comparison of the year's wind speed data with Weibull and Rayleigh distribution 

approximations.         

Wind speed                        Actual data Probability density function     Rayleigh 

1 0.044212788 0.053921653 0.235472402 

2 0.383403975 0.365535209 0.468192436 

3 0.481627823 0.492145597 0.690411991 

4 0.087642099 0.088161299 0.920549322 

5 0.002310257 0.000661859 1.150686652 

6 8.82173E-06 3.99674E-08 1.380823983 

7 4.87971E-09 2.38799E-15 1.610961313 

8 3.91003E-13 1.12772E-26 1.841098644 

9 4.5385E-18 2.19048E-43 2.071235974 

10 7.63117E-24 5.93078E-67 2.301373304 

 11 1.85873E-30 4.9324E-99 2.531510635 

12 6.55824E-38 1.8019E-141 2.761647965 

R2   0.998282818 0.343817106 

RMSE   0.006628004 

0.273175332 

 

Distribution R² RMSE χ² Rank Fit Assessment 

Weibull 0.998 0.006 0.0008 1 Best Fit 

Rayleigh 0.343 0.273 0.1321 3 Underfit 

Lognormal 0.951 0.032 0.0173 2 Good Fit 

Gamma 0.902 0.047 0.0249 4 Slight Underfit 

 

Table 2. The monthly Weibull shape parameter (k) and scale parameter (c) for Muktagacha          

during 2019-2023. 

Period 2019 2020 2021 2022 2023 Whole year 

Parameter 𝒌 𝒄 𝒌 𝒄 𝒌 𝒄 𝒌 𝒄 𝒌 𝒄 𝒌 𝒄 

January 3.263 1.952 2.725 2.311 2.993 1.835 5.587 2.345 4.711 2.277 3.644 2.15 

February 2.498 2.567 2.686 2.406 4.779 2.305 4.866 2.667 4.03 2.543 3.509 2.507 

March 2.123 2.791 1.63 2.545 3.52 2.901 5.121 2.991 2.501 3.131 2.618 2.902 

 April 2.614 3.158 2.762 3.308 5.311 3.437 6.526 4.024 4.079 3.184 3.89 3.438 

May 4.008 4.137 2.885 3.646 5.339 3.044 6.691 3.512 4.555 3.072 4.316 3.491 

June 3.127 3.477 4.276 3.816 6.976 3.802 8.919 3.962 6.569 3.963 5.36 3.815 

July 4.081 4.102 4.677 3.796 7.267 3.497 6.422 2.894 5.881 3.447 5.342 3.55 

August 3.745 3.476 4.439 3.93 7.448 3.197 5.742 3.152 5.771 3.241 5.095 3.403 

September 3.403 3.123 3.315 3.127 4.772 2.366 6.11 2.692 4.214 2.872 4.095 2.84 

October 2.187 2.321 3.056 2.269 5.825 2.279 4.857 2.273 4.829 2.455 3.701 2.333 

November 2.901 1.994 2.982 2.085 6.193 2.003 5.387 1.988 4.736 2.033 4.065 2.027 

December 2.627 2.282 3.261 2.107 4.998 2.33 5.271 2.021 3.934 1.841 3.76 2.122 

Yearly 3.02 2.957 3.121 2.96 5.3 2.754 5.97 2.878 4.476 2.844 4.067 2.886 
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Fig. 5 illustrates the Weibull and Rayleigh distributions 

used to approximate the actual wind speed probability 

distribution for the entire year. Table 3 provides a 

comparison of these approximations with the observed 

probability distribution. Both distributions align closely 

with the actual data, as indicated by higher R² values 

and lower RMSE values presented in Table 3. Among 

the two models, the Weibull probability density 

function offers the best overall fit, with superior R² and 

RMSE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

values, which are widely recognized as key indicators 

of model accuracy.   

Table 4 demonstrates annual Weibull parameters, 

average wind speed, and power density. The average 

wind speed (vm) varies slightly but remains consistent 

overall, with the highest values recorded in 2022. Power 

density (P) exhibited significant variations, with 2022 

emerging as the year with the highest wind energy 

potential. This highlights the substantial year-to-year 

wind energy potential fluctuations driven by varying 

wind conditions. Overall, the data demonstrates how 

wind speed and energy potential evolve annually, 

shaped by changes in the distribution's characteristics 

and occurrences of extreme wind speeds. 

Fig. 6 compares power densities derived from the actual 

probability distributions and those estimated by the 

Weibull and Rayleigh models. The Weibull model 

consistently predicts lower power densities than the 

Rayleigh model, particularly during months with higher 

wind speeds. For example, in June, the Weibull model 

estimates a power density of 30.2505 W/m², whereas 

the Rayleigh model predicts 50.9004 W/m². This 

suggests the Rayleigh model may offer a more realistic 

representation of wind energy potential during elevated 

wind speeds.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Annual wind speed trends for Muktagacha between 2019 and 2023. 

Year 𝑣𝑚  (m/s) k c (m/s) 𝑣𝑀𝑃 (m/s) 𝑣𝑀𝑎𝑥𝐸  (m/s) P (W/m2) 

2019 2.64 3.02 2.96 2.58816471 3.498820631 15.79105562 

2020 2.65 3.12 2.96 2.61562591 3.469121092 15.63674741 

2021 2.54 5.30 2.75 2.647364245 2.925412776 11.3871445 

2022 2.67 2.75 5.97 5.067519033 7.27851262 135.6596681 

2023 2.59 2.88 4.48 3.858956369 5.37694637 55.95785968 

 

Fig 5. Comparing actual wind speed distributions 

with the Weibull and Rayleigh approximations. 
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Fig. 7 illustrates the discrepancies in power densities 

predicted by the Weibull and Rayleigh models 

compared to the actual probability distributions. The 

Rayleigh model generally exhibits lower mean error 

values, indicating higher accuracy in estimating power 

densities than the Weibull model. The Weibull model's 

most significant error occurs in November, while the 

smallest error occurs in March. Similarly, the Rayleigh 

model also records its highest error in November.   

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Performance with ML (Machine Learning) 

based models 

The subsection aims to evaluate the performance 

accuracy of the proposed modified model (Artificial 

Neural Networks -ANNs) against the ML-based 

models. The models were assessed using various 

scenarios: prediction and mean absolute error 

(MAE), which are summarized in Tables 5 and 6. 
 

Mean Absolute Error (MAE) remained below 0.5 

m/s across all months and years, indicating a well-

trained ANN model with good generalization 

across time. Best performance is in 2021, with the 

lowest MAE and near-parity between actual and 

predicted values. The most challenging month is 

January 2019 (MAE = 0.41 m/s), likely due to 

seasonal variability or low wind fluctuations that 

are harder for models to learn. MAEs are generally 

higher in summer months (April–June), which 

could be due to increased wind fluctuations, 

thermal convection, and monsoonal effects. 
 

Conclusions  

The wind characteristics in Muktagacha, 

Mymensingh, Bangladesh, from 2019 to 2023 were 

analyzed to evaluate the probability and power 

density distributions using wind speed data. Monthly 

wind speed data were modeled with two widely used 

continuous distributions: Weibull and Rayleigh. The 

results revealed that the Weibull distribution 

provided more accurate power density estimations 

than the Rayleigh distribution, as evidenced by 

higher R²values and lower RMSE values. 

Furthermore, the study highlighted significant 

temporal fluctuations in wind power density, 

reflecting the variability of wind speeds over time.  
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Fig 7. Monthly errors in wind power density 

are assessed by evaluating the differences 

between measured data and the power density 

estimates derived from Weibull and Rayleigh 

models. 

 

Fig 6. Monthly wind power density is assessed 

by comparing actual data against the densities 

calculated using the Weibull and Rayleigh 

models. 
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Table 5. Machine Learning-Based Models regarding Artificial Neural Networks (ANNs) concerning 

2019-2023 wind speed (m/s) for Muktagacha, Mymensingh. 

 2019 2020 2021 

Months Actual Predicted MAE Actual Predicted MAE Actual Predicted MAE 

Jan 1.75 1.83  

 

 

 

 

 

0.41 

2.06 2.14  

 

 

 

 

 

0.23 

1.64 1.72  

 

 

 

 

0.09 

Feb 2.28 2.21 2.14 2.23 2.11 2.08 

Mar 2.47 2.38 2.28 2.34 2.61 2.54 

Apr 2.81 2.90 2.94 2.87 3.17 3.12 

May 3.75 3.5 3.25 3.14 2.81 2.76 

Jun 3.11 3.2 3.47 3.36 3.56 3.49 

July 3.72 3.65 3.47 3.33 3.27 3.24 

Aug 3.14 3.10 3.58 3.49 3.00 2.97 

Sep 2.81 2.90 2.81 2.78 3.17 2.14 

Oct 2.06 2.18 2.03 2.09 2.11 2.05 

Nov 1.78 1.91 1.86 1.98 1.86 1.92 

Dec 2.03 2.01 1.89 1.96 2.13 2.19 

 

 2022 2023 

Months Actual Predicted MAE Actual Predicted MAE 

Jan 2.17 2.15  

 

 

 

0.09 

 

 

2.08 2.19  

 

 

 

 

0.1 

Feb 2.44 2.35 2.31 2.34 

Mar 2.75 2.88 2.78 2.75 

Apr 3.75 3.51 2.89 3.02 

May 3.28 3.23 2.81 2.92 

Jun 3.75 3.37 3.69 3.61 

July 2.69 2.86 3.19 3.18 

Aug 2.92 2.95 3.00 3.05 

Sep 2.5 2.78 2.61 2.83 

Oct 2.08 2.29 2.25 2.41 

Nov 1.83 2.01 1.89 2.01 

Dec 1.86 1.95 1.67 1.8 

 

Table 6. Summary of ANN Performance (2019–2023) 

Year MAE Range (m/s) Prediction  Accuracy Notable Observations 

2019 0.09 – 0.41 Moderate High error in Jan (0.41); overall reasonable 

2020 ~0.09 – 0.23 High MAE is generally low, suggesting good fit 

2021 ~0.05 – 0.12 High Lowest average MAE, strong ANN performance 

2022 ~0.09 – 0.37 Moderate Good fit with slight underprediction in summer 

2023 ~0.1 – 0.22 High Consistent predictions with good generalization 
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