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 This paper highlights the effectiveness of classifying crop diseases and pests 

using different Convolutional Neural Network (CNN) models, utilizing 

images of diseased and pest-infested leaves. By combining CNNs with 

classification techniques like Support Vector Machines (SVM), accuracy 

improved to an impressive 98-99%  across various plant disease categories. 

CNNs automate feature extraction and classification, outperforming 

traditional methods in complex tasks. The paper compares Local Binary 

Pattern (LBP) with a total of 18 CNN architectures, including Residual 

Network such as ResNet-101, Google Net, DarkNet-19, and others, 

demonstrating that CNNs consistently exceed 99 % accuracy in datasets for 

rice, corn, and jute. Our model achieved 99.9 % accuracy for Rice, 99.87 % 

for Jute, and 99.01% for Corn datasets when utilizing the ResNet-101 and 

DarkNet-19 CNN models. In agricultural areas like Bangladesh, this 

emerging method has the capability to completely transform crop disease 

management by facilitating early identification and prompt response, which 

would increase crop yields and food security. The work also makes real-time 

disease prediction accessible to farmers by introducing a Graphical User 

Interface (GUI). The potential of CNN-based systems to revolutionize 

precision agriculture, maximize resources, lower expenses, and empower 

farmers is highlighted in this study. 
 

Introduction 
 
 

Plant diseases significantly impact global agriculture, 

reducing crop yields, putting food security at risk and 

resulting in losses (Islam, 2020). Conventional 

detection techniques, which are frequently prone to 

errors, lead to inaccurate diagnoses and losses (Naidu 

et al., 2021). The accuracy of disease detection is 

increased by deep learning, particularly Convolutional 

Neural Networks (CNNs), which outperform 

conventional techniques (50–70%) with an accuracy 

of over 90% (Rajendran and Islam, 2017). While 

Panigrahi et al.'s CNN model achieved 98.78% for 

maize disease diagnosis, models such as Enhanced K-

Nearest Neighbors (EKNN) and EfficientNet achieve 

95% accuracy in pest identification (Panigrahi, 2020). 

The efficiency of detection is further improved by 

transfer learning and image preprocessing (Srestha, 

2020). A Deep Convolutional Neural Network 

(DCNN) model that classified five diseases and 

healthy leaves with 96.08% accuracy used a modified 

Visual Geometry Group 19 (VGG-19)-based transfer 

learning strategy for rice leaf disease identification. 

This strategy reduces production losses and lowers 

rice prices by integrating drone and IoT technology to 

offer real-time, affordable diagnostics (Latif et al., 
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2022). Moreover 60% of Bangladesh's workforce 

works in agriculture, which accounts for one-third of 

the country's GDP (Hassan, 2021). Crop yields 

decrease by 10–20% because of poor disease 

management, even with extensive pesticide use 

(Bharate and Shirdhonkar, 2017). Farmers have 

benefited from increased disease diagnosis accuracy 

brought forth by technology use (Gandhi et al., 2018). 

Deep learning improves food security and 

sustainability by providing quick, scalable, and 

affordable solutions (Falaschetti et al., 2022). 

Pests and diseases are major biological risks to rice, 

corn, and jute, as shown in Fig. 1. Jute has the highest 

pest-related losses (20%), followed by rice (15%) and 

corn (10%). Similarly, disease losses consistently 

affect all three crops, ranging from 10% to 15% 

(Islam, 2020). These trends highlight the urgent need 

for integrated crop protection to improve yield 

stability and food security. 

The objective of this study is to create an efficient 

detection system that improves accuracy in detecting 

diseases and pest infestations by using multiple CNN 

models as feature extractors and Support Vector 

Machine (SVM) as a classifier. A range of datasets of 

rice, corn, and jute crops with various pest infestations 

and diseases are gathered for the study, which then 

pre-processes the data and extracts features for 

accurate classification. (Hasan, 2019) 

   

  

 

 

 

 

 

 

 
Fig. 1. Yield loss share of pests, diseases, and 

weeds in Rice, Corn, and Jute crops (Islam, 2020). 

 

In order to identify the top-performing model, it 

compares 18 CNN architectures, such as Residual 

Network 101 (ResNet-101) for rice and jute and 

DarkNet-19 for maize. Additionally, traditional LBP 

methods are contrasted with CNN-based feature 

extraction, especially when it comes to detecting pest 

infestations and disease symptoms based on texture 

patterns. A Graphical User Interface (GUI) that is easy to 

use is also designed for real-time validation, making it 

practical for farmers and agricultural specialists. This 

study hypothesizes that when it comes to identifying pest 

infestations and diseases in rice, corn, and jute crops, 

CNN-based feature extraction combined with SVM 

classification will perform better than conventional 

Local Binary Pattern (LBP) techniques. 

This approach facilitates precision agriculture, 

maximizes resource use, and improves large-scale 

crop monitoring by utilizing CNNs for accurate 

diseases and pest identification, thus contributing to 

sustainable farming and worldwide food security.  

Materials and Method 

In this study, we have separately classified crop 

diseases for rice and corn, and pest infestation for jute, 

which are three significant crops in Bangladesh. For 

this classification, we used images of disease-infected 

leaves from rice and corn, and pest-infested leaves from 

jute. LBP and CNN were used as feature extractors, 

while SVM was used for classification. The workflow 

of the classification model  is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

Fig. 2. Workflow of the crop disease and pest 

detection model using LBP for texture analysis, 

CNN for feature extraction, and SVM for 

classification. 
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The process begins with collecting image datasets. In 

this case, three datasets were used such as 

Dataset 1: Corn images, 

Dataset 2: Jute images and  

Dataset 3: Rice images.  

The collected images undergo pre-processing to 

prepare them for feature extraction. Images were 

resized to a uniform size to ensure consistency across 

the dataset. Images are typically converted to 

grayscale when using LBP, which extracts texture 

information based on intensity levels (Sharma et al., 

2020). This phase reduces computing complexity 

while concentrating on texture information. Image 

augmentation was used to increase dataset diversity 

for CNN models that had already been trained. 

Rotation, resizing, scaling, flipping, and brightness 

adjustments were typically required for this (Hassan 

et al., 2021). Important features that can be used for 

categorization are taken out of the images at the 

feature extraction step. Features that are known to 

perform well for image classification tasks were 

extracted using LBP and CNN models that had 

already been trained (Panchal et al., 2019). Building 

and validating the classification model came next. 

Each dataset has been split into five folds, or subsets 

of which 20% was the testing dataset and 80% was the 

dataset for training. The K-Fold Cross-Validation 

technique was employed to validate the model on 

various subsets of the dataset, enhancing its 

robustness (Tugrul et al., 2022). The overall 

performance of the model was determined by 

averaging the results across all folds. Once the model 

is trained and validated, the SVM classifier was 

applied to classify the images based on the extracted 

features (Agarwal et al.,  2020). The final step 

involves verifying the model’s performance through a 

GUI that is built using MATLAB. This allows users 

to interact with the model and test its predictions.  

Dataset Description  

Dataset 1 consists of 4,800 images of corn plants, 

distributed across four classes: Common Rust, Gray 

Leaf Spot, Northern Leaf Blight, and Healthy, with 

each category containing 1,200 images. Dataset 2 

contains 660 diseased jute plant images categorized 

into three classes: Stem Weevil, Jassid, and Aphid - 

each with 220 images. Dataset 3 comprises 4800 

diseased rice plant images divided into four classes: 

Bacterial Blight, Leaf Blast, Brown Spot, and Tungro, 

with 1200 images per class. (Fig. 3). Fig. 4. presents 

sample images from the three datasets used in the 

experiment. Each image serves as a visual 

representation of plant health conditions or diseases. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Datasets: (1) 4,800 corn images across 4 

classes, (2) 660 jute images across 3 classes, (3) 

4,800 rice images across 4 classes. 

 

 

 

 

 

 

 

 

 

Fig. 4. Sample images of Corn, Jute and Rice  

 

 

 

 

 

 

 

Datasets: (Dataset 3: (a) Bacterial Blight, (b) Leaf 

Blast, (c) Brown Spot, (d) Tungro), (Dataset 2: (a) 

Stem Weevil, (b) Jassid, (c) Aphid), (Dataset 3: (a) 

Common Rust, (b) Gray Leaf Spot, (c) Healthy, 

(d) Northern Leaf Blight). 
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Image Pre-processing 

To enhance the consistency and quality of the dataset, 

several pre-processing steps were applied before 

inputting the images into the neural network. This 

involved applying data augmentation methods 

including rotation and flipping, as well as scaling 

every image to a standard size for pre-trained CNNs 

and turning it to gray-scale for LBP (Noola and 

Basavaraju, 2022). LBP works with the grayscale pixel 

intensity values of an image, which typically range 

from 0 to 255 in an 8-bit grayscale image (Rajeena et 

al., 2023). In CNNs, pixel values are often normalized 

by dividing them by 255, transforming the range from 

0–255 (for 8-bit images) to 0–1. This normalization 

can improve model performance and accelerate 

training. Additionally, the sizes of the images are 

changed to 224×224 pixels when used with CNN 

models. 

Extraction of Image Features with LBP Operator 

The LBP is a simple yet powerful texture operator that 

labels pixels in an image by thresholding the  

Fig. 5. Feature extraction in LBP. 

neighbourhood of each pixel and interpreting the 

result as a binary number. (Huang et al., 2019).The 

image is initially transformed to grayscale in order to 

get the LBP texture description. After choosing an r-

sized neighborhood around the central pixel for each 

pixel in the grayscale image, the LBP value is 

computed and saved in a 2D array that corresponds to 

the image's dimensions (Fig. 5). When comparing the 

center pixel to its eight surrounding neighbors, there 

are 256 possible LBP code permutations. If center 

pixel’s intensity is greater than or equal to a 

neighbor's, the corresponding value is assigned 1; 

otherwise, it is set to 0 (Kamilaris and Prenafeta-Boldú, 

2018). The comparison proceeds in a consistent 

clockwise or counterclockwise direction, starting 

from any adjacent pixel (Sourav and Wang, 2023). An 

8-bit binary number is produced by binary 

comparisons throughout the 3×3 neighborhood and 

then transformed to a decimal value. By properly 

utilizing its capacity to acquire fine-grained 

information, the original LBP implementation 

performs exceptionally well at capturing complex 

details inside the image. This feature, however, 

significantly restricts the algorithm's ability to identify 

features on scales other than the fixed 3×3 

neighborhood (Kaur and Kang, 2015).  

Extraction of Image Features with CNN 

This network is a highly effective and commonly used 

tool for extracting image features through deep learning 

techniques. In CNN-based image feature extraction, the 

network learns to detect and represent different image 

elements across multiple layers.  

Convolutional layers use small filters (or kernels) to 

identify fundamental features such as edges, corners, and 

textures (Latif et al., 2022). The convolution operation 

includes sliding of the filter across the image and 

calculating the dot product between the filter and local 

image patches. The result is a feature map that 

emphasizes regions containing specific patterns of 

interest. (Khirade and Patil, 2015). 

Table 1. List of 18 pre-trained CNN models with 

their respective feature layers used for 

performance evaluation. 

Pre-Trained CNN Feature Layer 

AlexNet fc8 

ResNet-18 fc1000 

ResNet-50 fc1000 

VGG-19 fc8 

DarkNet-19 avg1 

ResNet-101 fc1000 

Inception-v3 predictions 

VGG-16 fc8 

Xception predictions 

NasNet-Mobile predictions 

DarkNet-53 conv53 

InceptionResNet-v2 predictions 

DenseNet-201 fc1000 

SqueezeNet pool10 

ShuffleNet node202 
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GoogleNet loss3-classifier 

MobileNet-v2 Logits 

EfficientNet-b0 MatMul 

 

Table 1 lists the pre-trained CNN that was employed 

in this investigation as well as the fully-connected 

feature layer that was used to extract the image feature 

vectors. The CNN model is composed of multiple 

layers performing convolution, rectified linear units 

(ReLU), and pooling layers (Islam, 2020). To 

illustrate, a brief overview of the layered architecture 

of two popular CNN architectures, ResNet-101 and 

Darknet-19, is provided below. Fig. 6 displays the 

ResNet-101 structure (Kulkarni and Shastri, 2024). 

The design includes an input layer for feeding input 

images, a convolution layer, a pooling layer, and an 

output layer, as shown in Fig. 7. 

The ResNet-101 architecture as shown in Fig. 6. 

begins with an input layer where images of a fixed size 

(typically 224×224 pixels) are fed into the network. 

The initial convolutional layer uses a large kernel 

(7×7) for feature extraction, followed by ReLU 

activation for normalization and non-linearity 

(Padilla, 2020).The network then passes through a 

series of stacked residual blocks, organized into four 

stages, each with multiple blocks. In order to mitigate 

the vanishing gradient issue, residual blocks in ResNet 

use skip connections to avoid layers and allow 

gradients—partial derivatives that define how weights 

are updated during training—to flow directly 

backward (Tejaswini et al., 2022). 

 

 

 

 

 

 

 

 

Fig. 6. The layered Architecture of Pre-Trained 

ResNet-101 CNN model. 

Each block contains convolutional layers, batch 

normalization, ReLU, and a skip connection to 

facilitate learning residual functions. After the  

residual blocks, global average pooling aggregates 

spatial information into a vector, which is then passed 

through fully connected layers for classification or 

regression. The network uses ReLU activations 

throughout and ends with a SoftMax layer for image 

classification tasks, producing class probabilities. 

(Mukti and Biswas, 2019) 

Darknet-19 is a CNN  architecture tailored for real-

time object detection. It comprises 19 convolutional 

layers and 5 max-pooling layers, incorporates Leaky 

ReLU activations, and is esteemed for its 

effectiveness and precision in identifying objects 

within images.  

 

 

 

 

 

 

 

 

 

Fig. 7. The layered Architecture of Pre-Trained 

DarkNet-19 CNN model. 

The Darknet-19 network starts with  an input layer that 

accepts an image of size 224×224. It then applies 3×3 

convolutional filters with a stride of 1, followed by 

max-pooling layers to reduce spatial dimensions as 

shown in fig. 7 (Padilla et al., 2020).To optimize 

computation, the network alternates between 1×1 and 

3×3 filters, ensuring accuracy while reducing 

computational complexity. After passing through the 

convolutional layers, the feature maps are flattened 

and fed into a fully connected layer for the final 

classification. The output layer is a Softmax layer, 

which computes class probabilities for the 

classification task. (Panigrahi et al., 2020). 
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Classification of Leaf Disease Using SVM 

This study utilized two feature extraction techniques: 

LBP and CNN. For classification tasks, a SVM, a 

supervised machine learning algorithm, was 

employed. SVM is effective for both linear and non-

linear classification problems, as it identifies the 

optimal hyperplane that maximizes the margin 

between classes, ensuring robust generalization to 

unseen data (Awad and khanna, 2015). In this study, 

SVM was applied for multi-class classification within 

the CNN framework using the "one-vs-all" strategy. 

The fitcecoc function in MATLAB was used to train 

multiple binary classifiers, facilitating the distinction 

between different classes. (Shrestha et al., 2020) 

In the instance of LBP, texture information is captured 

by comparing the intensity of a central pixel with its 

neighbors in order to derive feature vectors from leaf 

images. After that, SVM classifiers are trained using 

these LBP features; for complicated, non-linear 

problems, we used different kernels such as Radial 

Basis Function (RBF) for producing better accuracy. 

Evaluation Metrics 

Analyzing various prediction outputs and the metrics 

that go along with them is necessary to evaluate model 

performance in classification jobs. True Positives 

(TP), False Positives (FP), and Precision are important 

components that show how accurate and reliable the 

model is in making predictions. TP indicates that the 

positive class was accurately identified, whereas a 

True Negative (TN) happens when the model 

accurately predicts the negative class. On the other 

hand, a FP happens when a negative occurrence is 

mistakenly classified as positive, while a False 

Negative (FN) happens when a positive instance is 

misclassified as negative (Sun et al., 2022). The 

accuracy of positive classifications is indicated by 

precision, which is the ratio of accurately predicted 

TPs to all positive predictions. 

Accuracy =
TP + TN

TP + FP + FN + TN
∗ 100% 

The ratio of correctly predicted true positives to all 

positive predictions. It measures how accurate 

positive predictions are. 

Precision =
TP

TP + FP
 

Sensitivity: The ratio of true positive predictions to the 

total number of actual positive instances. This metric 

evaluates the model's capability to identify all relevant 

examples. 

Sensitivity =
TP

TP + FN
 

F1 Score: The precision and recall harmonic mean. It 

offers an ideal balance between sensitivity and 

precision. 

F1 Score = 2 ∗ Precision ∗
Sensitivity

Precision + Sensitivity
 

AUC-ROC (Area Under the Receiver Operating 

Characteristic Curve): This metric computes the area 

under the ROC curve, which ranges from 0 to 1, in 

order to assess the effectiveness of classification 

models. Better model performance is indicated by a 

higher AUC. Perfect class separation is shown by an 

AUC of 1, while no discriminative ability is 

indicated by an AUC of 0.5. When the model's AUC 

is zero, it frequently misclassifies both positive and 

negative targets.  

Confusion Matrix: A classification model is assessed 

using a confusion matrix, which is a tabular 

representation that contrasts the model's predictions 

with the actual results. Predictions are divided into 

four sections, with accurate and inaccurate 

classifications for both positive and negative classes 

provided. The confusion matrix indicates areas that 

require development and offers insights into the 

accuracy of the model. 

Performance Evaluation of LBP-based SVM 

First, the feature vectors of leaf image of a particular 

crop (i.e., rice, jute or corn) is extracted using LBP 

operator. Then, three LBP-based SVM classifiers are 

implemented separately each for leaf images of rice, 

jute and corn. For this, we have utilized both RBF and 

Linear kernels due to their effectiveness in handling 

complex datasets. The investigation revealed that the 

RBF kernel consistently provided an average accuracy 
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30% higher than the Linear kernel. Consequently, the 

RBF kernel was chosen as the candidate for the grid 

search process. To optimize SVM, the process is 

conducted using the grid search method. This in-depth 

investigation covers differences in the gamma and 

regularization parameters (C), all of which are 

essential to attaining the best possible model 

performance. The following hyperparameters were 

considered for fine-tuning the SVM as shown in Fig. 7.: 

Kernel: [Linear, RBF]  

C: [0.1, 1, 10, 100]  

Gamma: [’scale’, ’auto’, 0.1, 1, 10] 

As for the gamma parameter, when it is set to ’scale’ 

the algorithm modifies each data point’s influence 

according to the reciprocal of the dataset’s feature 

count. Mathematically, this adjustment is represented 

as 1 / (n features * X.var ()) were  X.var () denotes the 

variance of the feature values. Alternatively, when 

gamma is set to ’auto’, the algorithm automatically 

adjusts the gamma parameter based on the inverse of 

the number of features in the training dataset, 

calculated as 1 / n features. By making the SVM 

model learn the unique features of the dataset, these 

gamma shifts help to ensure a more efficient and 

accurate classification method. 

Table 2 presents the tuning of hyperparameters γ 

(gamma) and C (regularization parameter) for the 

RBF kernel in SVM to optimize classification 

performance. The best performance for corn was 

observed with γ = scale and C = 1, while γ = scale and 

C = 10 yielded the best results for jute and rice, 

indicating that model performance is highly sensitive 

to appropriate hyperparameter selection. 

The values for corn dataset classification using 

features extracted using LBP are represented in Fig. 8. 

With a large number of incorrect classifications across 

multiple classes, the confusion matrix demonstrates 

the model's difficulty in correctly classifying the data. 

Particularly for the Healthy and Grey Leaf Spot 

categories, numerous instances have the wrong labels. 

 

Table 2. Tuning Hyperparameters (𝜸 and C) for 

RBF Kernel for achieving optimal classification 

performance using SVM. 

Tuning 

Hyperparam

eters for 

RBF Kernel 

Regularization Parameter (C) 

 

 

 

Gamma ( 𝜸 ) 

 

C=0.1, 

𝜸= 

scale 

C=1, 𝜸= 

scale 

(Best for 

corn) 

C=10, 

𝜸= scale 

(Best for 

jute & 

rice) 

C=100, 

𝜸= scale 

C=0.1, 

𝜸= auto 

C=1, 𝜸= 

auto 

C=10, 

𝜸= auto 

C=100, 

𝜸=auto 

C=0.1, 

𝜸=0.1 

C=1, 𝜸= 

0.1 

C=10, 

𝜸= 0.1 

C=100, 

𝜸= 0.1 

C=0.1, 

𝜸= 1 
C=1, 𝜸= 1 

C=10, 

𝜸= 1 

C=100, 

𝜸= 1 

C=0.1, 

𝜸= 10 

C=1, 𝜸= 

10 

C=10, 

𝜸= 10 

C=100, 

𝜸= 10 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Confusion matrix of the corn dataset using 

LBP features, with TP, TN, FP, and FN values. 

 

Performance Evaluation of CNN-based SVM  

Feature vectors were extracted separately for three 

crops rice, jute, and corn using a total of 18 CNN 

models listed in Table 1. The extracted feature vectors 

were then used as input to a SVM for classification. 
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Fig. 9. Confusion matrix of corn dataset using 

pre-trained ResNet-101 model, with TP, TN, FP, 

and FN values. 

The classification performance of all the 18 CNN 

models was analyzed using various metrics, including 

accuracy, precision, sensitivity, specificity, F1 score 

and AUC. To illustrate the performance of the 

approach, confusion matrices were generated for each 

crop using all 18 models. A sample of corn dataset’s 

confusion matrix is given in Fig. 9. The confusion 

matrix shows misclassifications are minimal, indicating 

strong overall performance and reliability. 
 

Result  

In our demonstration, we extracted feature vectors 

separately from leaf images of rice, jute, and corn 

using the LBP operator and 18 different CNN models. 

These features were then classified using the widely-

used SVM. The process was performed separately for 

each crop’s image dataset. For classification, 80% of 

the images from each class were used to train the 

SVM, while the remaining 20% were used for testing. 

We evaluated the performance of both LBP-based and 

CNN-based SVMs using accuracy, precision, 

sensitivity, specificity, and F1 score. Finally, a User 

Interface (UI) was developed for real-time model 

validation. 

Training and Validation of the Models using 5-

Folds Cross Validation 

Every dataset was divided into five folds, or subsets, 

with the training dataset comprising 80% and the 

testing dataset 20% of each fold. Each of the model’s 

k training and evaluation cycles used a different fold 

as the validation set. The model’s overall performance 

has been determined by averaging the performance 

across the folds as depicted in fig. 10. For Rice, Corn  

and Jute datasets the best performing CNN models 

were respectively Resnet-101 and DarkNet-19. 
 

 

 

 

 

 

Fig. 10. 5-Fold Cross Validation of Rice Dataset 

for the model ResNet-101. 

Result Evaluation of LBP-based SVM Model 

The investigation revealed that the RBF kernel 

consistently provided an average accuracy 30% 

higher than the Linear kernel. Consequently, the 

RBF kernel was chosen as the candidate for the grid 

search process. 

 

 

 

 

 

 

 

 

 
 

 

Fig. 11. Performance comparison showing 

accuracy, precision, recall, f1 score, and 

specificity of the LBP model. 

Despite hyperparameter tuning of the SVM applied 

to features extracted through local binary pattern, 

the highest observed accuracy averaged at 81.25% 

across all datasets. Due to the suboptimal 
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performance of LBP even with optimal SVM 

parameters, the research shifted to CNN-based 

feature extraction. 

Result Evaluation and Comparison of CNN-

based SVM Models  

The efficiency of the network in large-scale image 

recognition tasks is well known, particularly when it 

comes to precision agriculture. In order to investigate 

a more reliable method of deriving features and 

classification with the target of much increased 

accuracy, a strategic move towards CNNs was made. 

As we can see from Fig. 12. to Fig. 17. the ResNet 

101 model for Jute and Rice Datasets and Darknet-

19 model for Corn Dataset fared better than any of 

the other models, outperforming them all in terms of 

precision, recall, sensitivity, specificity, f1 score, and 

validation accuracy. We obtained an accuracy of 

99.01% for corn datasets using DarkNet-19 and an 

accuracy of 99.9% and 99.87% for Rice and Jute 

datasets respectively using ResNet-101. Figures 

display the findings following the validation of the 

models on Datasets respectively. The ResNet-101 

model and DarkNet-19 outperformed the current 

models in every evaluation, as can be seen from the 

performance comparison shown in these figures. 

 

 

 

 

 

 

Fig. 12. Accuracy comparison of the pre-trained 

models considering independent training and 

validation dataset. 

The comparative analysis of CNN models for 

agricultural datasets highlights the effectiveness of 

specific architectures for different crops. The Resnet-

101 model, known for its deep residual learning frame 

work, has shown superior performance for Rice and 

Jute datasets, indicating its robust feature extraction 

capabilities in diverse conditions. Meanwhile, the 

Darknet-19 model, with its inception modules, has 

proven to be the most accurate for the Corn dataset, 

suggesting that its architecture may be better suited for 

the particularities of corn’s image data. The close 

performance of ResNet-101 for the Corn dataset also 

suggests that it is a versatile model that can be 

considered for various agricultural applications. This 

information can guide future research and practical 

applications in precision agriculture, optimizing crop 

monitoring and management through tailored CNN 

model selection. 

 

 

 

 

 

 

 

 

 

Fig. 13. Precision comparison of the pre-trained 

models considering independent training and 

validation dataset. 

 

 

 

 

 

 

 

 

 

Fig. 14. F1 Score comparison of the pre-trained 

models considering independent training and 

validation dataset. 
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Fig. 15. Sensitivity comparison of the pre-trained 

models considering independent training and 

validation dataset. 
 

Furthermore, its adaptability to different crops 

highlights the potential for scalable solutions in 

disease detection and overall crop health assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 16. Specificity comparison of the pre-trained 

models considering independent training and 

validation dataset 
 

Future studies can further refine model architectures 

to improve accuracy and efficiency in diverse 

agricultural environments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  Performance metrics comparison of CNN models across various studies, including accuracy (A 

%), precision (P %), sensitivity (S %), specificity (sp %), and F1 score (F %). 

Author Model Total 

Image 

Class A % P % S % Sp % F % 

Pangrahi            

et al. 

CNN 3823 

(Corn) 

3   98.7 98.6 98.9    - 98.7 

Daneshwari 

et al. 

EKNN 3820 

(Corn) 

4   

 

99.8 - - 99.6 - 

Rajeena         

et al. 

Efficient Net 3188 

(Corn) 

4 98.8 88 - 98 - 

Sourav            

and Wang  

CNN 1535 (Jute) 4 - 95 95 - 95 

Latif                

et al. 

DCNN 2187 (Rice) 6 96 96.2 96.1 99.2 96.1 

This Paper Resnet101 + 

SVM 

4,800 

(Rice) 

4 99.9 99.6 99.6 99.7 99.7 

This Paper Resnet101 + 

SVM 

660 (Jute) 3 99.8 99.4 99.7 99.7 99.7 

This Paper Darknet19 + 

SVM 

4,800 

(Corn) 

 

4 99 98 98 98.8 98 
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Comparison Analysis of Different Studies 

 A comparative analysis between this paper and 

other relevant studies demonstrates that our 

modified CNN + SVM model exhibited superior 

performance. Specifically, our model achieved 

99.9% accuracy for Rice, 99.87% for Jute, and 

99.01% for Corn datasets when utilizing the 

ResNet-101 and DarkNet-19 CNN models. 

Table 3 compares the performance metrics of various 

CNN models used in prior studies and the proposed 

models in this paper. The proposed 

ResNet101 + SVM and Darknet19 + SVM models 

outperformed existing methods across all metrics, 

achieving accuracy rates up to 99.9% and F1 scores of 

99.7%, demonstrating superior precision, sensitivity, 

and specificity in crop disease classification for rice, 

jute, and corn. 

Prediction in Real Time with Graphical User 

Interface  

A GUI application for disease detection with pre-

trained models has been created through the “Browse” 

button. The “Detect” button displays the predicted 

label to the users. Using the MATLAB R2021a 

version, users can explore and choose an image for 

disease classification using the GUI. The “Train” 

button causes the model to be trained on a predefined 

dataset. Training outcomes, such as accuracy and a 

confusion matrix, are then displayed. It applies the 

trained model to extract features and predict the 

disease class, displaying overall accuracy through the 

“Accuracy” button. Users can then input new test data 

using the “Browse” button. 

 

 

 

 

 

 

 

 

Fig. 17. Labelling of UI Components. 

 The disease detection system can be interacted with 

through an easy-to-use interface thanks to the GUI’s 

text labels, axes, and buttons. The deep learning 

model’s information is stored by the code using 

global variables. 

 

 

 

 

 

 

 

 

Fig. 18. Validation of the model using UI. 

A sample image from rice dataset have been uploaded 

for prediction using pre-trained ResNet-101 as shown 

in Fig. 18. The model accurately predicted the label of 

the given image as “Bacterial Blight” with an 

accuracy of 99.9% respectively. 

Discussion  

With distinct advantages over more conventional 

techniques like LBP-SVM, this study highlights the 

potential of CNNs in the detection of plant diseases 

and pests. ResNet-101 and DarkNet-19 singled out for 

their performance across the rice, jute, and corn 

datasets out of the 18 CNN models that were assessed 

in the study. Accurate crop monitoring depends on 

these models' ability to recognize intricate leaf 

patterns, discolouration, and insect structures. 

Furthermore, their applicability extends beyond 

disease detection to pest identification due to their 

capacity to identify structural characteristics of pests, 

such as shape  and segmentation patterns. 

By beating conventional deep learning models in 

terms of accuracy and classification measures, a 

comparison with previous research showed how 

successful the modified CNN-SVM method was. 

Computational demands are still a problem, though, 

particularly in settings with restricted resources. 

Looking ahead, there are several avenues for 
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improvement and expansion. Efforts to optimize the 

model for lower computational costs such as portable 

mobile phones without compromising accuracy will 

make the technology more accessible. 

Conclusion 

With an accuracy of up to 99%, this study shows how 

CNN-based models can revolutionize the 

identification of plant diseases and pests. These 

models provide an efficient instrument for precision 

agriculture by precisely detecting pest structures, 

textural alterations, and leaf discolouration. The 

incorporation of these models into simple user 

interfaces may enable early diagnosis, lowering crop 

losses and enhancing yield management in 

Bangladesh, where agriculture is essential to the 

country's economy and food security. Farmers in rural 

areas need this information because they experience 

limited resource availability together with restricted 

access to knowledge. 

Further development of the technology should tackle 

current computational constraints in order to expand 

accessibility and enable national adoption. Deep 

learning developments combined with the use of 

mobile and edge devices may close this gap and make 

these technologies usable even in settings with limited 

resources. The advancement of agricultural 

technologies would help sustain farming practices 

while securing national food supply and increasing 

resource effectiveness throughout Bangladesh’s 

agricultural sectors. 
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