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 This study examines the vorticity of a nano-sized superconducting pyramidal 

sample using the 3D Ginzburg-Landau (GL) formalism, a crucial tool for 

analyzing the nonuniform geometrical sample. We consider a field applied 

perpendicularly to the pyramid's base and characterize the sample's static 

properties as a function of its coherence lengths. The study focuses on the 

vortex nucleation point (vortex penetration field) and the vortex 

configuration within the sample. The sample's free energy, magnetization, 

and other steady properties are measured on the plane orthogonal to the field 

with the applied magnetic field increases. We examine two samples with 

different dimensions, one equal to 12ξ and the other 6ξ. The study 

investigates the variation of the Meissner state's stability range and the 

critical field of the pyramidal sample as a function of the sample size. 
 

Introduction 
 
 

A field within condensed matter physics, known as 

mesoscopic physics, focuses on studying materials 

of intermediate sizes (Alegria et al., 2021). These 

materials can range in size from the nanoscale, 

which is just a few atoms (e.g., a molecule), to 

micrometers. The size of mesoscopic samples is 

typically similar to the coherence length (ξ) and/or 

magnetic field penetration depth (λ) (Ge et al., 

2023). This sample size significantly affects the 

sample characteristics under an external magnetic 

field (H) (Taupin et al., 2016), and the presence of 

this factor can create several superconducting 

states, along with phase transitions. Variations in 

the temperature (T) or the applied magnetic field to 

the mesoscopic sample can cause magnetization 

jumps (Geim et al., 1997).  

Research has been previously conducted on 

mesoscopic superconductor’s magnetic response 

with different geometries: (i) disk-shaped samples 

(Deo et al., 1997; Zharkov et al., 2000), (ii) 

indefinitely long cylinders (Zharkov et al., 2000), 

(iii) ring-like structures (Baelus et al., 2001), and 

more complex geometries (Fomin et al., 1998). The 

Ginzburg-Landau (GL) theory forms the basis for 

the theoretical study of mesoscopic 

superconductors, providing a satisfactory 

explanation for mesoscopic samples across a wide 

range of magnetic fields and temperatures (De 

Gennes, 2018). Typically, disks or cylindrical 

geometries of mesoscopic superconducting samples 

enclosed by an insulator or vacuum exhibit two 

types of superconducting states. A circularly 

symmetric state with a fixed angular momentum 

value is one form among them, known as a "giant 

vortex." Important issues regarding magnetic 

properties and phase transitions in certain 

geometrical systems should be addressed, including 

basic and technological aspects. 
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Understanding the process of magnetization in type-II 

superconductors depends largely on the dynamics of 

magnetic vortices. The relationship between the 

vortices and sample surfaces and the sample shape 

decreases with sample size. Various research studies 

have focused on magnetizing a mesoscopic 

superconductor without pinning centers (Baelus et al., 

2004). Calculations indicate transitions between various 

large vortex states in mesoscopic type-I superconducting 

thin films, with multi-vortex states being mostly 

metastable, although occasionally thermodynamically 

stable states are also observed. Mesoscopic triangular 

cylinders of type-I samples reveal a vortex-antivortex 

molecule (Misko et al., 2003). 

The effect of surface defects and sample geometry on 

vortex dynamics was examined using a finite element 

method to solve the TDGL equations (Kim et al., 

2007). The mixed state in the mesoscopic cylindrical 

sample made of type-II superconducting materials 

shows that as the system searches for the 

configuration with the lowest Gibbs free energy, it  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

passes through nearly stable intermediate states. The 

sample's square symmetry aligns with the steady-state 

arrangement. Several bulk superconductor 

experiments (De Gennes 1965; Fink and Presson, 

1969) investigated the influence of sample surfaces on 

the first vortex entry.   

According to Deo et al. and Schweigert et al., Phase 

transitions of the first order take place between large 

vortices with different angular momentum, causing 

the observed magnetization jumps (Deo et al., 1997). 

Second, in samples with sufficiently large radii, 

multivortex structures (Schweigert et al., 1998) can 

form, which are comparable to the bulk 

superconducting material's Abrikosov flux line lattice. 

These states are a mixture of different angular 

momentum vortex states. An effective total angular 

momentum or vorticity can also be introduced for 

multi-vortex states. Phase transition of the second 

order occurs with changing the magnetic field, 

bringing about a switch between the multi-vortex 

states (MVSs) and giant vortex states GVSs) (Baelus 

and Peeters, 2002; Wang and Wang, 2019).  

Fig. 1. Superconducting pyramidal sample in the presence of an applied magnetic field 

where the field is perpendicular to the base plane of the sample. Here, L, W, and h 

represent the tip's length, width, and height, and in this case, L=W=h. We are 

considering two samples, one with all dimensions (L, W, h) equal to 6ξ and another with 

all dimensions equal to 12ξ. 
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The boundary effect significantly impacts the charge 

distribution in such mesoscopic samples. 

Furthermore, the sample's screening currents cause 

charge redistribution, resulting in a nonuniform 

distribution even in the Meissner state. This scenario 

is similar to an inverted vortex, with its core extending 

to infinity. When vortices exist, the Meissner charge 

interacts with the previously investigated vortex 

charge (Meissner and Ochsenfeld, 1933; Maxwell 

1950; Bardeen et al., 1957), which is specific to 

mesoscopic samples. We conducted a theoretical 

investigation into electrical charge redistribution that 

occurs in various geometries of mesoscopic 

superconducting samples, such as disks and cylinders. 

Recent improvements in microfabrication and 

experimental techniques have focused emphasis on 

mesoscopic superconductors. Important basic and 

technological problems about magnetic characteristics 

and phase transitions in such small, constrained 

systems must be addressed.  

In samples of comparable size to the coherence length, 

the layout of the vortices is determined by the 

confinement of the superconducting condensate. In 

previous studies, researchers have explored the shapes 

of disks within the framework of the Linearized GL 

equation. They assumed a uniform magnetic field 

within the disks. P. Singha Deo, V. A. Schweigert, F. 

M. Peeters and A.K. Geim (Deo et al., 1997) examined 

the magnetization curve of mesoscopic disks with 

finite thickness changes with the external magnetic 

field. Several experimental techniques have been 

devised to observe these unique states, but none of 

them have been able to distinguish between MVSs and 

GVSs. 

Mel'nikov et al. developed a comprehensive 

numerical model to describe the vortex state of FFS 

using the time-dependent Ginzburg-Landau (TDGL) 

theory (Mel'nikov et al., 2002). They also introduced 

a symmetry-based approach to analyze vortex 

molecules and complexes through analytical studies. 

Their simulations allowed for a thorough analysis of 

the nonlinear region at low fields. 

Because the shape of a mesoscopic sample differs 

from the Abrikosov lattice triangle, the vortex patterns 

prominently display aspects of the sample's shape 

instead of the triangular lattice, leading to powerful 

finite-size effects and significant shape effects 

determining vortex configurations. For example, as 

proven theoretically (Baelus et al., 2001; Baelus et al., 

2004) and experimentally (Grigorieva et al., 2006), 

vortices in mesoscopic disks create circular symmetric 

shells that are size-dependent (Misko et al., 2007). 

When confined, small disks can cause vortices to 

transform into large vortexes (GV) due to strong 

confinement effects. Among mesoscopic 

superconductors of different shapes, triangles are 

noteworthy. The symmetry of quilateral triangles and 

the Abrikosov vortex lattice is the same. This implies 

that a triangle can accommodate part of the vortex 

lattice without distortion for a given number of 

vortices. Therefore, vortex patterns in the shape of 

triangles are much more stable because the interaction 

between vortices and boundary effects enhances their 

stability (Zhao et al., 2008). 

A magnetic field's existence influences 

superconductivity behavior in small equilateral 

triangles, squares, and other configurations while 

maintaining the symmetry (C3, C4) of the boundary 

conditions (Chibotaru et al., 2001). This can result in 

a new vortex configuration surrounding a single 

antivortex. Researchers have studied the behavior of 

type II mesoscopic superconducting spheres with an 

externally applied magnetic field (Baelus et al., 2007). 

They studied the stable vortex states in these spheres 

at different radii. A study by A. Hasnat explored how 

the pyramidal topology of a superconductor affects 

vortex formation and stability (Hasnat, 2020). 

One of the popular theories used to describe the 

magnetic behavior of superconductors is the 

Ginzburg-Landau (GL) theory, the time-dependent 

version of it is generally called the time-dependent 

Ginzburg-Landau theory (TDGL). Computational 

analysis involves using finite-element discretization 

of the TDGL equations (Tinkham, 2004). These 

methods are recognized as powerful computational 
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tools for approximating solutions to partial differential 

equations, especially for samples with complex 

shapes. 

In Fig. 1, the superconducting pyramidal sample is 

displayed with the observation plane (P) indicated 

when a magnetic field is applied. The superconducting 

properties of a 3D inhomogeneous sample can be 

observed more easily using the GL formalism than 

with the other tools. The pyramidal shape of the 

superconducting sample is unique in terms of its 

applicability. Pyramidal samples have a higher critical 

field value than their bulk materials. STM's scanning 

tip could have a pyramidal form. The major goal of 

this research is to investigate the magnetic, 

thermodynamic, and critical phenomena of 

superconducting pyramidal samples using the 3D GL 

formalism. Free energy, Cooper pairs density, 

magnetism, and screening current density will all be 

examined in terms of coherence length. The variance 

in coherence length determines the quality of the 

various sample materials. We want to connect the 

coherence duration with the sample's Meissner state. 

We want to determine under what conditions the 

Meissner state and critical current will be enhanced.   

Theoretical formalism 

A nano-sized superconducting sample is placed within 

an insulator media under a homogeneous, 

perpendicular applied magnetic field 𝐻⃗⃗ . By applying 

the dimensionless variables, we obtain the following 

form of 3D GL equations: 

 

 

 

 

with boundary condition 

 

 

The superconducting electron is represented by 

𝜓(𝑟 ) = |𝜓| exp(𝑖ϕ), where 𝜓 denotes the 

superconducting complex order parameter with the 

magnitude value of |𝜓| and with its phase ϕ. The value 

of |𝜓∗𝜓| is nearly equivalent to the superconducting 

electrons’ number, Ns, at a position 𝑟 . The 

supercurrent that runs through the material below Tc 

is represented by the phase ϕ (𝑟 ). The coherence 

length (ξ) determines the distance, and the order 

parameter is defined by 𝜓0 = √−
𝛼

𝛽
, where α and β 

are called the GL coefficients.   

The boundary conditions at the sample boundaries 

cause the normal component of the superconducting 

current to become zero. To solve the GL equations, we 

use a uniform grid space (in Cartesian x, y, z 

coordinates) with 5 grid points at every unit of ξ 

distance and a superconductor area of 63×63×63 grid 

points. Next, we use an iterative procedure based on 

the link variable approach and the Gauss-Seidel 

technique to determine the order parameter (ψ). The 

iterative process is directed in the following manner:  

Here, 𝜂 is the real coefficient 𝜓, and 𝜓0 is the best 

approximation of the current and next iteration. 

Using a link variable approach, 

 

 
 

 

 

 

 

with 𝜇 = x, y and z 

The essential numerical technique is to find words that 

go along with the new answer for 𝜓 and to evaluate 

based on 𝜓0 

 

 

In another form 

 

and solution 

Here, ξ, λ and Hc2 indirectly depend on the 

temperature: 

 

𝑛⃗ . (−𝑖𝛻⃗ 3𝐷 − 𝐴 )𝜓|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 0. 

[(−𝑖𝛻⃗ 3𝐷 −  𝐴 )2𝜓0 − 𝜓0 + |𝜓0|
2𝜓0]

= 𝜂(𝜓 − 𝜓0) 

𝑈𝜇
𝑟 1, 𝑟 2  ≡ exp[−𝑖 ∫ 𝐴 𝜇

𝑟 1

𝑟 2

(𝑟 ). 𝑑𝜇 ] 

[−𝜓0 + |𝜓0|
2𝜓0 −

1

𝑈𝜇

𝜕2

𝜕𝜇2
(𝑈𝜇𝜓0)]

= 𝜂(𝜓 − 𝜓0) 

[ 𝜂 − (1 − 𝑇)
4

𝑑2
+

2|𝜓0|
2] 𝜓 =  𝑈̃𝜓0 + 𝜂 𝜓0 +

2𝜓0|𝜓0|
2 −  𝜓0

2𝜓∗ 

 𝑐 𝜓 − 𝑎 + 𝑒𝜓∗ = 0 

(−𝑖𝛻⃗ 3𝐷− 𝐴 )2𝜓 = 𝜓(1 −  |𝜓|2), 
 

−𝑘2∆𝐴  = 𝐽3𝐷 =
1

2𝑖
(𝜓∗𝛻⃗ 3𝐷𝜓 −

𝜓𝛻⃗ 3𝐷𝜓∗) −  |𝜓|2𝐴 ,  
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ξ(T) =  
ξ(0)

√1 − 𝑇/𝑇𝑐0

 

λ(T) =  
λ(0)

√1 − 𝑇/𝑇𝑐0

 

H𝑐2(T) =  𝐻𝐶2(0)(1 −
𝑇

𝑇𝐶0
) 

In our work, we considered two samples in terms of 

the different coherence lengths, such as one sample 

with the materials of 12ξ and the other 6ξ. Here the 

working temperature is considered at t=T/Tc0=0.9. We 

characterize the sample's properties with varying 

fields. Our main focus is to observe the changes in free 

energy in those fields.  

Results and Discussion 

We would like to investigate the static properties of 

the pyramidal mesoscopic samples. Pyramidal 

geometry has some unique advantages, the critical 

field of the pyramidal sample is enhanced than the 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bulk sample materials. We would like to observe the 

basic superconducting features such as the Cooper 

pairs density, screening current density, critical 

parameters, etc. Our results obtained are represented 

as follows. The free energy of the sample conveys a 

lot of crucial information about it; we start with the 

free energy curve here. In Fig. 2, the 12ξ sample's free 

energy has been shown with respect to the applied 

field. We observe that the free energy changes are 

continuous with varying fields, which expresses that 

there is no penetrating flux as a form of vortex (zero 

vorticity, L=0) inside the sample. This definite sample 

size and coherence length do not permit the nucleation 

of the vortex up to the point of the transition field. We 

did not observe the vortex in the 3D iso-surface plot 

in the entire range of free energy. The combined effect 

of these sample sizes and coherence length provides 

an extremely large Meissner state of the sample, 

which has some practical applications, such as the 

STM tip being used in the dissipationless regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Free energy changes with the applied field of the 12ξ sample. The inset shows the 3D 

iso-surface plot of the sample at the field H/Hc2=0.50 and H/Hc2=1.50. Here L denotes 

vorticity. The dotted line on the upper portion of the plot shows the superconducting state 

to the normal state transition point. 
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Magnetization vs. the applied field graph of 12ξ 

sample is shown in Fig. 3. The magnetization is 

increased up to the field H≈1.00Hc2. No jump 

(discontinuities) is observed in the curve, indicating 

that no vortex penetrated the sample in the entire range 

of the applied field. We didn't observe any 

paramagnetic effect as magnetization never takes the 

positive value. 

Distribution of (a-b) the Cooper pairs density and (c-

d) screening current density at the field of H=0.50Hc2 

and H=1.50Hc2, respectively are shown in Fig 4. The  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurements are taken on the base plane of the 

pyramid since this plane is in orthogonal alignment 

with the applied field. (a) There is a uniform 

distribution  

of the Cooper pairs density at field H=0.50Hc2, and (b) 

the Cooper pairs are less suppressed in the middle part 

than the edges part of the sample at field H=1.50Hc2. 

On the other hand, (c-d), the screening current density 

starts generating from the edges part of the sample, 

and the screening current gradually increases when the 

field increases. At the four corner edges of the sample, 

the screening current is considerably less than in other 

parts of the sample.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 12ξ sample’s magnetization changes with the applied field.  

 

Fig. 4. (a-b) Cooper pairs density and (c-d) screening current density of 12ξ sample 
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6ξ sample’s free energy vs. the applied field graph is 

shown in Fig. 5 (a). The dotted line specifies the 

transition point from the superconducting state to the 

normal state. Discontinuities are observed in the free 

energy graph, which indicates that the vortex appeared in 

this sample. The stability ranges of the distinguished 

vortex states are clearer in the magnetization curve 

(Please see in Fig. 6). 3D iso-surface plot of the sample 

at different vortex states such as L=1, 2, 3, and 4. 3D iso-

surface plot of the sample at different vortex states such 

as L=1, 2, 3 and 4 are also shown in the right panel of the 

Fig. 5 (b-e). (b-e) vortex is visualized, and the separated 

vortex can be seen clearly in the 3D representation of the 

sample's iso-surface plot.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Meissner state's stability range in the sample is 

observed at about ∆H ≈ 0.55 Hc2, with the critical field 

at around 1.78 Hc2. 

Magnetization of the 6ξ sample variation with the 

applied field is shown in Fig. 6. Discontinuities for the 

different vortex states in the magnetization are clearer 

than the free energy curve. The odd vortex states' 

stability range is shorter than the even number vortex 

states since the even number vortex states are 

energetically favorable for this pyramidal-shaped 

sample. The stability range of the L=4 state is greater 

than all states. Only paramagnetic effects are overserved. 

The magnetization of 6ξ is higher than the 12ξ sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. (a) Free energy changes with the applied field of the 6ξ sample. (b-e) 3D iso-surface plot of 

the sample at distinguish vortex states such as L=1, 2, 3, and 4. 

 

Fig. 6. Magnetization variation with the applied field of 6ξ sample. Discontinuities indicate the 

change of vortex states. 
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Contour plots of Cooper pairs density and screening 

current density of 6ξ sample at different vortex states, 

L=1 to 4, are shown on the base plan of the pyramid 

in Fig. 7, respectively. The value of the color is given 

on the corresponding color bar. Multi-vortex states are 

clearly observed from the contour plots. The Cooper 

pairs are completely suppressed in the center of every 

vortex and the distribution of the Cooper pairs are 

higher where the screening current is lower and vice 

versa, these are the fundamental properties. In the four 

corner edges of the pyramid, the Cooper pairs are 

higher than those of the side region due to the strong 

superconducting region. In the L=2 state, the second 

vortex comes from the other side of the same axis of 

the sample, and the two vortexes take a straight 

position. 

At the L=3 state, the third vortex enters from another 

axis and forms the triangular arrangement of the 

vortex. At the L=4 state, a square arrangement of the 

vortex is formed. At L=2, 4 states, there are symmetric 

arrangements of the vortex which gives the enhance 

stability range than the odd vortex states. In every 

vortex core, there is a whirl current in it. The screening 

current density on the edges of the sample is greater 

than the corners of the sample. This strong screening 

current presses the vortices to the center with 

increasing field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

The vorticity of a superconducting 3D nano-sized 

pyramidal sample is observed within the Ginzburg-

Landau (GL) formalism. Stationary properties such as 

Cooper pairs density and screening current density of 

the sample are studied in detail. Free energy and 

magnetization are calculated based on the varied 

applied fields. The variation of the vorticity with the 

different coherence lengths (ξ) is investigated. No 

vortex is observed (L=0; here, L is vorticity) in the 

sample with 6ξ dimension, but in the sample with 12ξ, 

Lmax= 7 is observed. Separated vortex (multi-vortex 

states) is clearly visible in the iso-surface plot 

obtained from the 3D data of |ψ|2. Only a paramagnetic 

response is observed by analyzing the sample's 

magnetization.  
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