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ABSTRACT

This paper provides an analytical method of finding 
all the (positive, integral) solutions of the 
Diophantine equation z2 = k(k2+3). We also prove 
analytically that the Diophantine equation z2 = 

k(k2+12) has no positive, integer solution.
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In studying the Diophantine equation        
x8+y3 = z4, Cenberci and Peker (2012) faced 
the two Diophantine equations z2 = k(k2+3) 
and z2 = k(k2+12). To find the solutions of 
these equations, Cenberci and Peker (2012) 
took the advantage of GP/Pari (2019).
This paper uses an analytical approach to find 
all the solutions of the Diophantine equation                
z2 = k(k2+3). This is given in Theorem 1.
Theorem 1: The only (positive, integral) 
solutions of the Diophantine equation

z2 = k(k2+3)                                (1)
are (k, z) = (1, 2), (3, 6), (12, 42).

Proof: From (1), we note that k divides z2, so 
that

z2 = ak for some integer a ≥ 1.        
Then, the Diophantine equation (1) takes the 
form

k2= a – 3.                                         (2)
From (2), we note that a and k are of opposite 
parity (if a is odd then k is even, and vice 
versa). Making use of (2), we get from (1),

z4= a
2 k2 = a2(a – 3).                            (3)

To solve the Diophantine equation (3), we 
consider separately the three cases that may result:

Case 1: 3 does not divide a.
In this case, (3) has a solution if

a = m
2, a – 3 = n

4

for some integers m ≥ 1 and n ≥ 1, so that
(m – n2)(m + n

2) = 3,
for which the only possibility is

m – n = 1, m + n = 3,
which gives m = 2, n = 1, so that

a = 4, k = 1, z = 2.

We thus get the first set of the solution 
mentioned in the theorem.
Case 2: 3 divides a.
In this case, 

a = 3b for some integer b ≥ 1.
We then rewrite (3) as

z4= 3
3b2(b – 1).                                   (4) 

The Diophantine equation (4) has a solution 
if, for some integers u ≥ 1, v ≥ 1,

b = u
2, b – 1 = 3v4.                              (5)

From (5), we get

(u – 1)(u + 1) = 3v4.                               (6)

We now consider all the possible cases of   (6).
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Case A: u + 1 = v
4, u – 1 = 3. 

Clearly, in this case, there is no solution. 

Case B: u + 1 = v
3, u – 1 = 3v. 

In this case, since 

2 = v(v2 – 3), 

the only solution is v = 2 (so that u = 7). 

Case C: u + 1 = 3v4, u – 1 = 1. 

In this case, v = 1 (u = 7) is the only solution. 

Case D: u + 1 = 3v3, u – 1 = v. 

Here, since 

2 = v(3v2 – 1), 

The only solution is v = 1. 

Case E: u + 1 = 3v2, u – 1 = v2. 

In this case, the only solution is v = 1. 

Thus, in Case 2, corresponding to the   Cases 

B – C, we get two more solutions of the 

Diophantine equation (1), namely, 

(k, z) = (3, 6), (12, 42). 

Case 3: When, in (4), 

b – 1 = 3b2 w4 

for some integer w  1. 

However, since in the resulting quadratic 

equation in b, that is, in 3b2 w4 – b + 1 = 0, 

discriminant = 1 – 12w4 < 0. 

Thus, this case cannot occur. 

All these complete the proof of the theorem. 

Next, we focus our attention to the equation     

z2 = k(k2 + 12). For this equation, we have the 

following result. 

Theorem 2: The Diophantine equation 

z2 = k(k2 + 12)                                       (7) 

possesses only the trivial solution (0, 0). 

Proof: We consider the following two cases 

separately. 

Case 1: k divides z, so that 

z = ck for some integer c  1.         

Then, (7) becomes, after rearranging the 

terms, 

k2 – c2 k + 12 = 0. 

So that the above quadratic equation in k has a 

solution, the discriminant must be a perfect 

square. Thus, 

c4 – 48 = d
2 for some integer d  1. 

Rewriting the above equation as 

(c2 – d)(c2 + d) = 48, 

and noting that c2 + d and c2 – d must be of the 

same polarity (that is, both even or both odd), 

we need only consider the following three 

possibilities : 

Case I: c2 + d = 24, c2 – d = 2, 

Case II: c2 + d = 12, c2 – d = 4, 

Case III: c2 + d = 8, c2 – d = 6. 

It is now an easy exercise to verify that none 

of the above systems of equations has a 

solution. 

Case 2: k divides z2, so that 

z2 = ek for some integer e  1.         

Then, (7) becomes, after simplification, 

k2 = e – 12, 

so that  

z4 = e2(e – 12).                                    (8) 

Now, the Diophantine equation (8) has a 

solution if 

e = f2, e – 12 = g4, 

for some integers f  1, g 1. Then, we must 

have 

(f – g2)(f + g
2) = 12. 
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Noting that f – g2 and f + g
2 must have the same 

polarity, we have only one possibility, namely, 

f – g2 = 2, f + g2 = 6. 

The above system gives g2 = 2, which has no 

integer solution. 

Thus, the Diophantine equation (7) has no 

(positive, integer) solution, which we intended 

to show. 

This paper gives the solution of two elliptic 

curves (see, for example, Silverman (1986), of 

the form 

z2 = k(k2 + n), 

with n = 3, 12.  Of the two equations, one has 

a finite number of (positive, integer) solutions, 

while the other has no solution. It would be an 

interesting problem to find all the solutions of 

the above equation, when n is any positive 

integer. 

We conclude the paper with the following 

result. 

Theorem 3: In the Diophantine equation 

x8 + y3 = z2k,                                         (9) 

where gcd (x, y, z) = 1, and k ( 1) is an 

integer, zk – x4 does not divide y. 

Proof: First we rewrite the equation (9) as 

y3 = (z
k – x4) (zk + x

4). 

Now, assuming that zk – x4 divides y, we can 

have the following two cases only: 

Case 1: zk + x4 = y3, zk – x4 = 1. 

 

 

 

 

 

Clearly, this case cannot happen, noting that    

zk – x4 = 1 if and only if z = 1, x = 0. 

Case 2: zk + x4 = y2, zk – x4 = y. 

Here, if y divides z, then y must also divide x, 

and we reach a contradiction (to the fact that x 

and z are relatively prime). Thus, y divides 

neither z nor x. Now, from the second 

equation, y divides zk – x4, so that writing 

zk + x
4

 = (z
k – x4) + 2x4, 

we see that y does not divide zk + x4, which is 

contrary to our assumption. 

Because of Theorem 3, we see that, in 

studying the Diophantine equation (9), we 

have to look for a solution(s) of the following 

system of Diophantine equations: 

zk + x4 = m3, zk – x4 = n3. 
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