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ABSTRACT 

In this article, we studied that no homeomorphism on unit interval into itself is chaotic in the sense of R.L. Devaney. 
We also studied the behavior of orbits of points in the dynamical system defined by homeomorphism on the unit interval. 

INTRODUCTION 
Chaotic dynamical systems have received a great deal of attention in recent years. Chaotic phenomena can 

be found in nearly all branches of non-linear modeling of dynamical systems. Chaos explains how very small 
changes in the initial configuration of a system model may lead to great discrepancies overtime, called the 
“butterfly effect”. This phenomenon accounts for our inability to make accurate prediction of weather. For 
example, despite enormous computing power and loads of data, chaos reviews linear iteration and explains both 
linear and nonlinear iteration with fixed points, cycles, and orbits through both graphical iteration and orbit 
diagrams. A deeper look at chaotic behavior and its unpredictability is investigating a phenomenon known as 
sensitive dependence on initial conditions  If we look at the logistic iteration rule )1(4 xxx -®  with two 
nearby seeds 0.5 and 0.5001, the orbit of first seed 0.5 is close to that of seed 0.5001, for first 13 or 50 iterations, 
they move away very differently. 

We studied mathematical theory concerning chaotic dynamical systems. Our attention is restricted to 
continuous maps on one-dimensional space. Typical chaotic maps on one-dimensional space are unimodal maps 
such as the tent map and logistic map on unit interval and the two-sided shift map of the Cantor set. The tent 
map, logistic map and two-sided shift map of the Cantor sets are chaotic. But it is obvious that the tent map and 
the logistic map on unit interval are not homoeomorphism of the unit interval into itself but the two-sided shift 
map of the Cantor set is a homoeomorphism of the Cantor set into itself. In this paper, we show that no 
homoeomorphism on unit interval into itself is chaotic. As the unit interval [0,1] is compact metric space and 
has infinitely many points, we use the theorem of J. Banks et al )2(  instead of using Devaney's independent 
chaotic three conditions. If metric space X  is a finite set but not the unit interval and the case where metric 
space X  is homeomorphic to the Cantor set, there exists a lot of chaotic homeomorphisms on metric spaces. 

We describe the behavior of orbits of point in the dynamical system defined by homeomorphism on the unit 
interval. )3(  Taking into account all the cases, we find a lot of non-chaotic homeomorphisms on [0, 1]. 

PRELIMINARIES 

Definition 2.1. Let X be a topological space and f  be a continuous map of X  into .X  The  pair ),( fX  is 

called a topological dynamical system. Given x in X, the subset { }¥

=1)( n
n xf  of X  is called the orbit of X  

under X and is denoted by )(xJ . Sometimes we need the expression )(xfx n
n = for x in X and xx =0  is 

called the seed of the orbit. The function nf is called the n-th iteration of .f   A function f is called a 

homeomorphism if it satisfies the conditions (i) f is bijective (ii) f and lf are continuous.  

                                                 
* Author for Correspondence 
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Let XXf ®: and YYg ®: be two functions. We say that f and g are conjugate if there exits a 
homeomorphism YXh ®:  such that h o f = g o h. The map h  is called conjugacy. We note here that the 

logistic map l and the tent map t on [0, 1] are topologically conjugate by conjugacy xxh
2

sin)( 2 p
=  on [0, 

1].  

Notation 2.2. We denote by R the set of all real numbers, Z the set of all integers, N the set of all positive 
integers and I the unit interval. For k ÎN, the sets of periodic points for a continuous map XXf ®: is 
denoted as follows: { }xxfXxfP kk =Î= )(:)( and   

{ }1,...,2,1for)(,)(:)( -=¹=Î= kixxfxxfXxfQ i
kk  and   

U

¥

=

=
1

).()(
k

k fPfPer
Namely, )( fPk  is the set of all k-periodic points, )( fQk  is the set of those k-periodic points 

whose prime period is k and )( fPer is the set of all periodic points. Obviously, )( fPer  and { }¥
=1)( kk fQ  

are family of mutually disjoint subsets of X. 

2.3. Examples of topological Dynamical Systems 

Example 2.3.1. Let X = [0, 1] and the l be the tent map which is defined by l(x) = 4x(1 – x). 

Example 2.3.2. Let X = [0, 1] and t be the tent map which is defined by t(x) = 1 - |1 – 2x|. 

Example 2.3.3. Let X = [0, 1] and f  be a continuous map of X  into itself. 

Example 2.3.4. Let X = R and f  be continuous map of X  into itself. 

Example 2.3.5. Let X = N and f  be the map of X into itself defined by ,1)( += nnf  for " nÎN. 
Example 2.3.6. Let X = {1,2,3,...,n} and f be the map of X into itself defined by 1)( += kkf  for 

11 -££ nk and .1)( =nf   

Example 2.3.7. Let { }10:2 ££= xeX ixp  be the unit circle in the complex plane and fq be the map defined 

by .)( )(22 qpp
q

+= xiix eef  The map fq is called the q-rotation on the unit circle. 

In the above examples, we considered the usual metrics, that is, d(x, y) = |x – y| in [0, 1] and R (Examples 2.3.3 
and 2.3.4), 

î
í
ì

=
¹

=
jiif
jiif

jid
0
1

),(   in N  and {1,2,3.......,n} (Examples 2.3.5 and 2.3.6)  

   and ( ) ||, 2222 iyixiyix eeeed pppp -= in the unit circle (Example 2.3.7). 
The metric d induces a canonical topology )(dO  in X. The family )(dO is defined by the open balls 

{ }.),(:),( ee <Î= xydXyxU  Namely, )(dO is the family of those subsets U which satisfies the 
following conditions: for any x in U there exits 0>e  such that .),( UxU Ìe  The infinite product of two 
points is called the Cantor set and in this paper we use two kinds of Cantor sets with matrices, namely 

{ }å+ Î Î= }1,0{:)( nNnn xx  with metric d+, where å
¥

=
+

-
=

1 2
||

),(
n

n
nn yx

yxd  for Nnnxx Î= )(  and 

Nnnyy Î= )( in S+  and { }å Î= Î }1,0{:)( nZnn xx  with metric d, where 

åå
¥

=

--
¥

=

-
+

-
=

10 2
||

2
||

),(
n

n
nn

n
n

nn yxyx
yxd  for Znnxx Î= )(  and Znnyy Î= )(  in S. 

The following is a typical dynamical system on the Cantor set. 
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Example 2.3.8. Let X = S+ and S+ be the map of X into itself defined by y = S+(x) where 

å+Î Î= ,)( Nnnxx  and å+Î Î= Nnnyy )( and 1+= nn xy for all n in N. 

Example 2.3.9. (Chaotic dynamical systems) 

(Tent map) :t [0, 1] ® [0, 1], =)(xt  1 – |1 – 2x|. 

(Logistic map) :l [0, 1] ® [0, 1], ).1(4)( xxx -=l   

(Shift map) C = PnÎN{0, 1},  ( ) ( )..............: 21210 xxxxxS ®+  

Definition 2.4. (Devaney) Let X be a metric space. A continuous map XXf ®:  is said to be chaotic on 

X  if f satisfies the following properties )1( :  
(C-1) Periodic points of f are dense in X. 
(C-2) f  is one-sided topologically transitive. 
(C-3) f  has sensitive dependence on initial conditions. 

Using notation, conditions (C-1) and (C-2) can be re-written as follows:  

(C-1) )( fPer is dense in X. 

(C-2) For any pair of non-empty point sets U and V in X there exists k Î N such that .)( f¹Ì VUf k   

(C-3) There exists d > 0 which satisfies for any Xx Î  and any neighborhood xN of x there exist xNy Î and 

k Î N such that ( ) .)(),( d³yfxfd kk  
The Conditions (C-1) and (C-2) are topological properties but the Condition (C-3) is not a topological property 
but metric one. However, if X is a compact metric space, the Condition (C-3) becomes as a topological property. 

Theorem 2.5. (J. Banks et al. )2( ) Let X be compact and has infinitely many points. If XXf ®: is transitive 
and has dense periodic points, then f has sensitive dependence on initial conditions. Namely, Conditions (C-1) 
and (C-2) implies Condition (C-3) 

REMARK: If X is a subset of R and finite, then there exists a homeomorphism of X which satisfies Conditions 
(C-1) and (C-2) but does not satisfy Condition (C-3). Namely the above result does not hold and is shown in 
Example 3.1.3. 

In order to describe the behavior of orbits of given points on the unit interval, we need the following lemma. 

Lemma 2.6. Let f be continuous map on I = [0, 1] with 0)0( =f and .1)1( =f If 00 )( xxf > (resp. 

00 )( xxf < ) for some x0 Î I, then there exist x1 and x2 in I such that  

(i) 201 xxx << (ii) 11 )( xxf =  and ,)( 22 xxf = (iii) xxf >)(  for all ),( 21 xxx Î   

(resp. xxf <)( ). 

Proof: It is sufficient here to note only that { }01 and)(:max xxxxfIxx <=Î= and 

{ }.and)(:min 02 xxxxfIxx >=Î=  

Now we confirm the following theorem and the proof is given according to the cases may be considered, in 
which we show that the map does not satisfy Condition (C-1) or (C-2). In order to describe the behavior of 
orbits in the unit interval I, we use the following lemma. 

Lemma 2.7. Let U be a bounded open set in the real line with usual topology. Then U is of the form 

U

Ai
ii yxU

Î

= ),,( where A is at most countable set and { }Aiyx ii Î:),( is family of mutually disjoint open 

intervals. 
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Proof: Since the set of all rational numbers in U is countable, that is, UQ Ì  is countable, we can write, 

{ } .1
¥
==Ì iirUQ  For each ,ir  there exists 0>e  such that ( ) ., Urr ii Ì+- ee Let 

{ },),(:min Uxaaai Ì= { }.),(:max Ubxbbi Ì=  Then .),(1 UbaD iii Ì¥
=  Next we show that 

).,(1 iii baDU ¥
=Ì  

Let x Î U. Since U is open, there exists 0>e  such that .),( Uxx Ì+- ee  Since Q is dense, there exists 

UQri ÌÎ  such that ).,( ee +-Î xxri Thus ),,(),( ii baxx Ì+- ee that is, ).,(1 iii baDU ¥
=Ì   

Now we show that if Kbaba jjii ¹Ì ),(),(  then ).,(),( jjii baba =  Suppose that  there exists 

),(),( jjii babaz ÌÎ and let ),,min( ii baa = and ).,max( jj bab =  

Then ).,(),(),( bababa jjii =È Since ,),(),( Ubabar iii ÌÌÎ Ubabar jjj ÌÌÎ ),(),( and

),( ii ba is maximal, we have ),(),( baba ii = and ).,(),( baba jj =  

Therefore, if ),(),( jjii baba ¹  then .),(),( Kbaba jjii =Ì  This means, ),(),( jjii baba =  or 

.),(),( Kbaba jjii ¹Ì  Now we define a finite or infinite sequence }{ ik as follows: 
k1 = 1 

{ }.),(),(:1min 112 f=Ì>= babaik ii   
By the mathematical induction,  

{ }.,.....,,for),(),(:min 1211 -- ==Ì>= nkkiinn kkkkbabakik f   

Now we put }.{ nkA = Then A is finite or countable and 
U

Ai
ii baU

Î

= ).,(                                                        

MAIN RESULTS 
3.1. Existence of chaotic homeomorphisms on the unit interval  
Theorem 3.1.1. Let f be a homeomorphism of [0, 1]. Then f  is not chaotic. 

Proof: Case (A) [ f is increasing, that is, 0)0( =f and 1)1( =f ] 
Case (A-1) [ xxf =)(  for all x Î I ] 
Let U and V be two non-empty disjoint open sets in I. Then f=Ì=Ì VUVUf k )(  for any k Î N. Therefore, f 
is not topologically transitive. Hence f does not satisfy (C-2). 
Case (A-2) [ There exists x0 Î I such that 00 )( xxf ¹ ] 

First we suppose that .)( 00 xxf >  Then by Lemma 1.1, there exist 1x  and 2x  in I such that  

(i) ),,( 210 xxx Î  (ii) ,)(,)( 2211 xxfxxf == (iii) xxf >)(  for all ).,( 21 xxx Î  In this case we 

have 2)(lim xxf n

n
=

¥®
 for all ).,( 21 xxx Î Namely, )( fPx kÏ for all Îk N. Thus ),( fPDx k1k

¥
=Ï  so that 

.)(),( 21 f=Ç fPerxx  Therefore, )( fPer  is not dense in I. Hence f does not satisfy (C-1). In the case 

where ,)( 00 xxf <  it can be proved in same way as the above case that f does not satisfy (C-1). 

Case (B) [ f is decreasing, that is,  1)0( =f ]  

We note that }{)()( 011 xfQfP == for some ).1,0(0 Îx  

Case (B-1) [ xxf 2 =)(  for all x Î I ] Let 01 xx <  and ).( 11 xfy = Then 01 xy >  and 

.)()( 11
2

1 xxfyf == Put ),( 1x0U = and ).,( 01 xxV = Then )1,()( 1yUf = and 

.),0()1,())(()( 11
2 UxyfUffUf ==== Thus we have 
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î
í
ì

=Ç
=Ç

=Ç
.),(),0(

),()1,(
)(

011

011

f
f

xxx
xxy

VUf k  

Therefore, f is not topologically transitive. Hence f does not satisfy condition (C-2). 
Case (B-2) [ There exists x0 Î I such that 00

2 )( xxf ¹ ] We suppose that .)( 00
2 xxf > Then by Lemma 2.6, 

there exist x1 and x2 in I such that (i) ),,( 210 xxx Î  (ii) ,)(,)( 22
2

11
2 xxfxxf ==  (iii) xxf 2 >)(  for 

all ).,( 21 xxx Î  In this case we have that 2
2 )(lim xxf n

n
=

¥®
for all ).,( 01 xxx Î  Namely, )( fPx kÏ for all 

k Î N. Thus ).( fPx k1k
¥

=ÈÏ Thus .)(),( 21 f=Ç fPerxx  Therefore )( fPer is not dense in I. Hence f 

does not satisfy Condition (C-1). In the case where ,)( 00
2 xxf < it can be proved in the same way as the 

above case that f does not satisfy Condition (C-1).                                                                                                      
It goes without saying that no homeomorphisms of [a, b] are one-sided topologically transitive for all a and b 
with a < b. 
In the above theorem, we have proved that any homeomorphism of the unit interval does not satisfy the 
Condition (C-1) or (C-2). There are a lot of homeomorphisms which are chaotic on metric spaces. The following 
examples are of them, one of which is the case where metric space X is a finite set but not the unit interval and 
the other is the case where X is homeomorphic to the Cantor set. 

Example 3.1.2. Let { }110 ,....,, -= nxxxX  and f  be the map on X defined by 1)( += ii xxf   for 

20 -££ ni  and .)( 01 xxf n =- Then f is chaotic and homeomorphism of X into itself. 

Example 3.1.3. Let X = PnÎz{0,1}, where Z is the set of all integers and f be the two sided shift of X. Namely, 
for Zkkxx Î= )(  and ,)()( Zkkyxfy Î== we have ).(1 Zkyy kk Î= + Then f is chaotic and 
homeomorphism of X into itself. 

3.2. Orbits of Points in dynamical systems defined by homeomorphism on unit interval. 
In the preceding sub-section we have shown that any homoeomorphism of the unit interval is not chaotic. 
However, our interest is to know the behavior of orbits of given points in the dynamical systems. Therefore, in 
this sub- section, we describe the behavior of orbits for those homeomorphisms completely. In the following, we 
show the behavior of orbits of points defined by homeomorphisms in unit interval I = [0, 1] according to the 
cases in Theorem 3.1.1 
Observation 3.2.1. Let f is a homeomorphism of I = [0, 1]. Then the orbits of points in unit interval I as 
follows: 
Case (A) [ f is increasing, that is, 0)0( =f and 1)1( =f ] 

Case (A-1) [ xxf =)(  for all x Î I ] xxf n

n
=

¥®
)(lim  for all x Î I. 

Case (A-2) [ There exists x0 Î (0, 1) such that 00 )( xxf ¹ ] Put ).(1 fPIU -=  Since )(1 fP is a closed set 
containing {0, 1}, the set U is non-empty and open. Thus, by Lemma 2.7, U is a union of mutually disjoint open 
sets, that is,  

U

Ai
ii y(xU

Î

= ), , where Kyxyx jjii =Ì ),(),(  for i ¹ j. Now it follows that xxf >)(  for all 

),( ii yxx Î or xxf <)( for all ),( ii yxx Î for each open interval. Then for ),( 1+Î ii xxx we have 

1)(lim +¥®
= i

n

n
xxf (resp. ix ) if xxf >)(   (resp.  xxf <)( ). We note that in the case where )(1 fP  is 

finite, we have )(}{ 1 fPx Aii =Î and Aiix Î}{  can be arranged as follows: n
iiAii xx 1}{}{ =Î = where 

.1.....0 21 =<<<= nxxx  

Case (B) [ f is decreasing, that is,  1)0( =f and 0)1( =f ] 

Case (B-1) [ xxf 2 =)( for all x Î I ] 
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Since f is a decreasing homeomorphism, )(1 fP consists of only one point in (0, 1). Let p be the fixed 

point. Then we have ]1,[]),0([ ppf = and xxf =)(2  for all x Î I. Thus we have xxf n

n
=

¥®
)(lim 2 and 

)()(lim 12 xfxf n

n
=+

¥®
 for all x Î I. 

Case (B-2) [ There exists x0 Î (0, 1) such that 00
2 )( xxf ¹ ] 

In the above case, we put }.{)(1 pfP =  Since )(2 fP  is closed set which contains {0, 1}, the set )(1 2 fP-  
is non-empty and open. Moreover, we can see that there exists a bijective correspondence by the map f between 

)),0()()(,0()( 22 pfQpfP Ç=Ç  and )).1,()()(1,()( 22 pfQpfP Ç=Ç  Now we put 

),0())(1( 20 pCfPU -= and ).1,())(1( 21 pCfPU -=  
Then U0 and U1 are non-empty open sets having following properties: 
                               

UU

Ai
i1

Ai
i0 ),,(z),,(x

ÎÎ

== ii wUyU  .)(,)( iiii zyfwxf ==  

Now it follows that (A) xxf >)(2  for all ),( ii yxx Î  or (B) xxf <)(2  for all ),( ii yxx Î for each open 
interval.  
Thus in Case (A) (resp. Case (B)) we have, for ),()(),,( 2

ii
n

ii yxxfyxx ÎÎ and i
n

n
yxf =

¥®
)(lim 2  

(resp. ix ), ),()(12
ii

n wzxf Î+ and i
n

n
wxf =+

¥®
)(lim 12  (resp. iz ). This completes the observation. 

3.3. Classification of homeomorphism of I = [0, 1] with corresponding examples 
We classify the homeomorphism of the unit interval and try to give examples of all possible classes (if any). By 
this classification and  Theorem 3.1.1, we find a lot of non-chaotic homeomorphisms of the unit interval. 
Class 3.3.1. [ xxf =)(  for all x Î I ] 
               xxf =)(  for x Î I. 

Class 2. [There exists )1,0(0 Îx such that 00 )( xxf ¹ ] 

Class 2.1. [ xxf >)(  for all x Î (0, 1)] 

Class 2.2.            

                    

.for...)4,3,2()(
)].1,0(allfor )([

.for....)4,3,2()(

Ixnxxf
xxxf

Ixnxxf

n

n

Î==

Î<
Î==

 

Class 2.3. [ There exist finitely many x Î (0, 1) such that xxf =)( ]  

                                  )()sin(1)( Nkxxk
k

xf Î+= p
p

for x Î I. 

Class 2.4. [ There exist countable many x Î (0, 1) such that xxf =)( ] 

                                  x
x

xxf +÷
ø
ö

ç
è
æ=

p2sin
7
1)( 2  for x Î I. 

Class 2.5. [ There exist uncountable many x Î (0, 1) such that xxf =)( ]. 

                                                       

ï
ï
î

ï
ï
í

ì

££+--÷
ø
ö

ç
è
æ

££

=
.1

2
1,

2
1)1(

2
1

2
10,

)(
2

2

xx

xx
xf                                   

Class 3. [ xxf 2 =)(  for all x Î I ] 
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Class 3.1. [ xxf -= 1)(  for all x Î I ] 
                                xxf -= 1)(  for x Î I. 
 
Class 3.2. [ xxf -> 1)( for all x Î (0, 1)] 

                               n nxxf -= 1)(  (n = 2,3,4,...) for x Î I. 
 
Class 3.3. [ xxf -< 1)(  for all x Î (0, 1)] 

                             ( )n
n xxf -= 1)(  (n = 2,3,4,...) for x Î I. 

Class 4. [ There exists x0 Î (0, 1) such that 00
2 )( xxf ¹ ] 

Class 4.1. [ xxf >)(2  for all x Î (0, 1)] 

There is no example in this class since )(1 fP  has only one point.  

Class 4.2. [ xxf <)(2  for all x Î (0, 1)]  
There is no example in this class because of the same reason as the above case. 

Class 4.3. [ There exist finitely many x Î (0, 1) such that xxf =)(2 ]  

                                               xxk
k

xf -+-= 1))1(sin(1)( p
p

 for x Î I. 

Class 4.4. [ There exist countable many x Î (0, 1) such that xxf =)(2 ] 

                                        ÷
ø
ö

ç
è
æ

-
-=

x
xxf

1
2sin)1(

7
1)( 2 p

+ 1 – x for x Î I. 

Class 4.5. [There exist uncountable many x Î (0, 1) such that xxf =)(2 ] 
 
CONCLUSION 
We have confirmed that there does not exist any chaotic homeomorphism on the unit interval into itself and if 
metric space X is a finite set but not the unit interval or if  X is homeomorphic to the Cantor set, there exist a lot 
of chaotic homeomorphisms. As a result it is shown that there exists a chaotic homeomorphism of X into itself if 
and only if X is homeomorphic to the Cantor set. )4(  Here we have described the behavior of orbits of given 
points on the unit interval which are defined by homeomorphisms. The behavior of orbits of given probability 
density functions instead of given points is shown in )5(.  
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