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ABSTRACT 

This investigation analyses application of Lie’s scaling group of transformations to steady 
flow of a Newtonian fluid over a stretching sheet in presence of chemically reactive species with 
first order reaction. The governing partial differential equations reduced to self-similar nonlinear 
ordinary differential equations by the transformations. Obtained momentum equation is solved 
analytically and the concentration equation is numerically solved applying finite difference method 
with Thomas algorithm. The plotted results reveal that with the increase of Schmidt number as well 
as reaction-rate parameter causes a reduction in the thickness of the concentration boundary layer 
and also the concentration at a point decreases. 
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INTRODUCTION 

The flow due to linearly stretching sheet is a standard problem in fluid mechanics. 
The problem has huge practical applications in polymer processing industries, paper 
production, several biological process and many others. The diffusion of chemically 
reactive species in boundary layer flow around the stretching sheet is very important in 
chemical industries, metal and polymer processing industries. 

Crane (1970) was the first person to study the laminar boundary layer flow caused by 
a stretching sheet with stretching velocity varying linearly with distance from a fixed 
point. The heat and mass transfer in Newtonian boundary layer flow past a stretching 
sheet with suction or blowing was studied by Gupta and Gupta (1977). Chakrabarti and 
Gupta (1979) analyzed the magnetohydrodynamics (MHD) flow of Newtonian fluid 
initially at rest over a stretching sheet at different values of the parameter related with the 
uniform temperature. Grubka and Bobba (1985) investigated the heat transfer 
characteristics of the stretching sheet problem with variable temperature. Tapanidis et al. 
(2003) discussed the application of scaling group of transformations to visco-elastic 
second-grade fluid flow. Recently, Mukhopadhyay et al. (2005) studied the MHD 
boundary layer flow and heat transfer over a stretching sheet with variable viscosity using 
the scaling group of transformations. 
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However, there are a several investigations on chemical reaction effects on flowing 
fluid done by many researchers. Das et al. (1994) investigated the effect of mass transfer 
on flow past an impulsively started infinite vertical plate with constant heat flux and 
chemical reaction. Anderson et al. (1994) studied the diffusion of a chemically reactive 
species from a stretching sheet. The similarity solutions of mixed convection with 
diffusion and chemical reaction over a horizontal moving plate were obtained by Fan et 
al. (1998). The study of MHD free convective flow and mass transfer over a stretching 
sheet with chemical reaction was done by Afify (2004). Recently, Cortell (2007a,b) 
discussed the effects of magnetic field on the flow and mass transfer of second grade 
fluid in a porous medium over a stretching sheet with chemically reactive species and 
also analyzed the motion and mass transfer for two classes of viscoelastic fluid past a 
porous stretching sheet with suction or blowing. 

In this paper, authors shall concentrate on the application of scaling group of 
transformations to analyze the steady boundary layer flow past a stretching sheet in 
presence of chemically reactive species, under going a first order reaction. By applying 
suitable scaling group of transformations, the set of governing partial differential 
equations for the flow and concentration distribution are transformed into a set of self-
similar ordinary differential equations. The appropriate boundary conditions for the 
velocity and mass concentration fields are also transformed. The solution of the 
momentum equation is obtained analytically and the concentration equation is solved 
numerically by finite difference method using Thomas algorithm. The analytical as well 
as numerical solutions have been plotted for different values of parameters involved. 
 
FORMATION OF THE PROBLEM 

Authors consider the steady flow of a viscous incompressible Newtonian fluid past a 
stretching sheet in presence of chemically reactive species under going a first order 
reaction. Using boundary layer approximation, the governing continuity, momentum and 
concentration equations in the may be written in usual notation as : 
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where u and v are the components of the fluid velocity along the x and y directions 
respectively,  is the kinematic viscosity, C is the concentration, D is the diffusion 
coefficient and k denotes the reaction rate constant. 
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The corresponding boundary conditions are given as : 

u = ax and v = 0 at y = 0 and u  0 as y   ;  (4) 

C = Cw at y = 0 and C  0 as y  ,  (5) 

where a > 0 is stretching constant, Cw denotes the concentration at the stretching sheet. 

Authors now introduce the stream function  as : 

u = 
y

  and v = 
x

   (6) 

and a relation for the concentration as : 

CCC w .  (7) 

The continuity Eq. (1) is satisfied clearly by the relations (6). In view of the relations 
(6) and (7), the Eqs. (2) and (3) reduce respectively to 
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and the boundary conditions become  
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; (10) 

1at 0C y   and 0atC y  . (11) 
 
SCALING GROUP OF TRANSFORMATIONS 

Authors now introduce the simplified form of Lie-group transformations, namely, 
the scaling group of transformations (Tapanidis et al. 2003, Mukhopadhyay et al. 2005) 
as : 

3 5 61 2 4* * * * * *: , , , , andx xe y ye e u ue v ve C Ce             (12) 

The transformation (12) may be considered as a point transformation, which 
transformed the coordinates ( , , , , , )x y u v C  to the coordinates * * * * * *( , , , , , )x y u v C . 

Taking the relations (12) in to account in Eqs. (12) and (13), authors obtain, 
respectively 
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and      2 3 6 2 1 6 1 6
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  (14) 

Both equations will remain invariant under the scaling group of transformations , if 
the following relations among the transformation parameters hold. 
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From (15) authors can easily obtain 2 = 0 and 1 = 3. The relation u* = */y* and 
v* = */x* gives us 3 = 4, 5 = 0. In view of these, the boundary conditions (10) and 
(11) are transformed to 

* * *
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; (16) 

* * * *1at 0and 0asC y C y    , (17) 

where the boundary condition C* = 1 gives 6 = 0. 

Thus the set of transformations  finally reduces to a one-parameter group of 
transformations 

1 1 1* * * * * *: , , , , andx xe y y e u ue v v C C           (18) 

Firstly, authors consider the absolute invariant,  which is a function of the 
independent variables and is taken as * * py x  . 

Since the quantity  is absolute invariant, they get * * p py x y x . 

Now, 1* *p pp py x y x e y x   if p = 0 (since 1 cannot be 0) 

Hence, authors ultimately get the first absolute invariant as  = y*. 

Authors now calculate the second absolute invariant, G = f() which involves the 
dependent variable * and assume that * *qG x  . Since G is an absolute invariant, we 

will find q such that * *q qx x  . 

Now,    1 1 1 1 1( 1)* * q q qq q q qx xe e x e e e x x              if  1q   . 

Putting q = 1, the second absolute invariant G becomes  
* 1 *G x   i.e.   * 1 *f x  . 

Lastly, authors attention is concentrated in finding the third absolute invariant, H =  

() which involves the independent variables and the dependent variable C* and is taken 
as * *rH x C . H is an absolute invariant if * *r rx C x C . 
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Now,    1 1 1* * r r rr r r rx C xe C x e C e x C x C        if r=0. 

Thus, the third absolute invariant is H = C* i.e. () = C*. 

Finally, from three absolute invariants, they get the following transformations as: 

   * * * *, andy x f C       . (19) 

In view of the above relations, the Eqs. (13) and (14) become 
2 0f ff f       (20) 

and 0D f k       (21) 

and the corresponding boundary conditions (16) and (17) are reduced to  

     0, at 0 and 0 asf f a f          ; (22) 

   1 at 0 and 0 as         . (23) 

Again, to eliminate the constant a and  authors introduce the following 
transformations for , f and  in Eqs. (20) - (23): 

,a f a f and a                    (24) 

and they obtain 1 2, 1 2, 1 2            and 0    . 

Finally, in view of the above transformations and taking , andf f       
the Eqs. (24) and (25) are reduced to the following self-similar forms: 

2 0f ff f      (25) 

and 0Sc f Sc      , (26) 

where Sc=/D is the Schmidt number and  = k/a is reaction rate parameter of the solute. 

The appropriate boundary conditions (22) and (23) take the following forms: 

     0, 1 at 0 and 0 asf f f          ; (27) 

   1 at 0 and 0 as         . (28) 
 
SOLUTION OF PROBLEM 

Crane (1970) obtained the exact analytical solution of equation (25) satisfying 
boundary conditions (27) as  

   1 expf     . (29) 

Now, the equation (26) transfers to the form given by  

  1 0Sc e Sc        (30) 
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satisfying the boundary conditions (28). 

Authors have to choose a suitable finite value of   , say * and then the interval 
[0,*] is divided into N equal subintervals of length =0.01 taking * = 20 for all the 
cases. Applying central finite difference formulae for the second and first orders 
derivatives of  as  
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the above equation (30) along with the boundary condition (28) reduce to 
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           1  j  N. 

Authors solve the system of equations (31) with the conditions (32) by the standard 
Thomas algorithm for solving the tri-diagonal system. 
 
RESULTS AND DISCUSSION 

The analytic solution of velocity field and numerical solution of concentration field 
for various values of parameters viz. Schmidt number and reaction-rate parameter are 
plotted in figures and discussed physically in every aspect. 

 
Fig. 1. The dimensionless velocity f() and stream function f(). 

The analytic solution for dimensionless velocity f() and stream function f() are 
plotted in Fig. 1 which shows the behaviour of flow inside the boundary layer. For large 
value of  the velocity diminishes, which is compatible with physical nature of the flow. 
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Authors now focus their attention on the variation of concentration profiles for 
several values of Schmidt number Sc. Fig. 2 represents the concentration profiles for 
different values of Schmidt number. From the figure it is seen that the concentration at a 
point as well as the thickness of concentration boundary layer decrease due to the 
increase of Sc. The Schmidt number is inversely proportional to the diffusion coefficient.  

 
Fig. 2. Concentration profiles  () for various values of Sc with  = 1. 

So, increase of diffusion coefficient increases the solute boundary layer thickness. At 
large values , the solute distribution vanish as expected. Finally, authors now discuss the 
effect of reaction-rate parameter  on the reactive concentration profiles. Fig. 3 is the 
graphical picture of concentration profiles for various values of .  

 
 

Fig. 3. Concentration profiles  () for various values of  with Sc = 0.5. 

Various curves representing the concentration profiles  () for several values of  
demonstrate that the value of reactive concentration at a fixed  decreases with 
increasing . So, the reaction-rate parameter is a decelerating agent and it thins the solute 
boundary layer formed near the stretching wall. 
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CONCLUSIONS  

The application of scaling group of transformations to steady boundary layer flow of 
viscous incompressible fluid over a stretching sheet in presence of chemically reactive 
species is demonstrated. After the transformations, the reduced self-similar ordinary 
differential equations are solved. The exact solution for velocity field is obtained and for 
the concentration distribution a numerical solution is found. The study shows that the 
concentration boundary layer thickness decreases with the increase of Schmidt number as 
well as reaction-rate parameter. 
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