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ABSTRACT 

The authors present the discretized form of the current distribution using the stream function 
approach starting from a continuous current distribution obtained recently for an active endcap 
transverse gradient coil in Magnetic Resonance Imaging (MRI) machine. The present discretized 
current distribution is compared with the one found using apodized current distributions on the 
cylinder and the cap surfaces separately and its advantages are discussed. 
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INTRODUCTION 

Gradient coils in a Magnetic Resonance Imaging (MRI) machine are used to 
generate linearly varying magnetic fields along the x-, y- and z-axes. They give a unique 
magnetic field at each point within the region of interest (FOV) resulting in a unique 
frequency of the signal from the resonance process. These coils are turned off and  
on rapidly during a scanning sequence producing eddy current effects on external 
metallic structures such as the magnet cold shields, the magnet dewar, and the like. To 
resolve this problem a second set of coils, placed between the primary gradient coil and 
the effected structures are introduced, known as the shielding coils. However, the 
conventional design of cylindrical shaped secondary shielding coils can not stem  
the fringe field outside completely. Baig et al. (2007) proposed a new way to design 
shielded gradient coils by augmenting the current density of the shielding coil on  
the surface of a cylinder by an endcap distribution that has azimuthal and radial  
current distributions. The design produced reduction on the fringe field compared with  
a traditional shielded gradient coil design and that, in turn, showed a reduction in  
acoustic noise on the external metallic structures. However, the design presented  
by Baig et al. (2007) were not optimized in terms of continuous current density 
distribution on the combined surface of the secondary. The continuity of the current 
distribution between the cylindrical part and the endcap parts were imposed after  
the discretization of the coil was done. This resulted in significant loss of shielding ability 
of this new gradient coil design. 
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In a recent work Al-Quaderi et al. (2010) solved for the continuous current 
distribution on the combined surface of the cylindrical secondary and the endcap 
surfaces. The current distribution found by them were general enough to include  
only the cylindrical secondary or the solely the endcap shielding coils. It also allowed  
the endcaps to be tilted at an angle α  generalizing from the case of perpendicular 
endcaps treated in Baig et al. (2007). The present paper uses the stream function 
approach to discretize the proposed current density in Al-Quaderi et al. (2010).  
The stream function is defined and found for the cylindrical and the endcap surfaces.  
The continuity of the current is automatically satisfied as the explicit form of the stream 
functions are constructed. The difference of the values of the stream function between 
two streamlines gives the current contained within the lines. The authors plot the 
streamlines and get the discretized current paths. At the end of the article the authors 
discuss their results comparing with the results of other authors and the possible 
implications of these in the design of MRI coils. 
 
STREAM FUNCTION FOR THE CURRENT DENSITIES 

The authors consider a cylindrical secondary surface and two caps attached at its two 
ends. The thickness of the coils are taken to be infinitesimal for the sake of simplicity 
making the current distribution confined on two-dimensional surfaces. The endcaps are 
tilted at an angle α  with the cylinder’s axis. The confinement of the current density is 
implemented by using the Dirac delta function and the Heaviside step function as: 

)  ( )  ( )) Z( (z  ~ )( 0
)(
,,

)(
,, ρΘρρΘρδφρφρ −−± S

C
z

C
z RKrJ
r

 (1) 

)  ( )  (z )  ( ~ )( )(
,

)(
, zLLRKrJ SSS

S
z

S
z −+− ΘΘρδφφ
r  (2) 

where the minus/plus sign corresponds to the caps that ends at SLz ±= , respectively. 
Here SL  is the half-length of the cylindrical secondary surface, 0ρ  is the radius of the 
inner end of the caps and SR  is that of the secondary cylindrical surface, respectively and 

zK ,,φρ  are the components of the surface current density. The 1D delta function has the 
dimension of inverse of length and hence ]/[][ LIK = . 

The equation of the cylindrical surface is 0=− SRρ  while that of the caps ending at 

SLz ±=  are 

[ ] cot )(  )( 0in αρρρ −+±=±= LZz  (3) 

where inL  is the distance of the inner end of the caps from 0=z  along the z-direction on 
the two sides and )  /()  (cot 0in ρα −−= SS RLL . 
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Fig. 1. Geometry of the X-gradient coil with tilted end-caps shown schematically for half of the 

length of the coils. Here ),( PP RL , ),( SS RL , ),( mm RL  and ),( extext RL  are the half-
lengths and the radii of the primary, secondary, main magnet and the external shielding 
surfaces, respectively. 

 

The stream function: The continuity equation for the current density )(rJ
rr

 reduces to the 

zero-divergence equation 0. =∇ J
rr

 in the absence of any accumulation or depletion of 
charge density. In cylindrical coordinates 
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for all points on the surface. Hence, authors can express the surface current density as a 
curl of some vector field S

r
: 

      SK
rrr

×∇=  (5) 

Since, K
r

 exists only on the surface, the vector field S
r

 has component perpendicular 
to the surface as well. The rotation or curl of S

r
 will point tangential to the surface. 

Definition: If a continuous surface current density K
r

 can be expressed as the curl of 
a vector field, which has non-zero component only normal to the surface, then that 
component is called the stream function of the surface current density on the particular 
surface. 

Hence, the stream function S is related to S
r

 by n Sn nSS ˆˆ)ˆ.( ==
rr

, where n̂ is a 
normal vector to the surface. 
Stream function on the cylindrical surface: The general form of the surface current 
density components on the cylindrical surface can be found from symmetry 
considerations as in Al-Quaderi et al. (2010) 
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The stream function S is the radial component of a vector field ( )0 ,0 ),,()( zSS S φ=
r

. 
Plugging this into the curl definition, the authors get, 
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Upon integration of (9), (10), the authors get two forms of )(SS  as: 

[ ]  )( )cos(    )( )( )(  1
)()( φφΘΘφ FdzzLLzzf S SS

SS +∫ −+=  (11) 

(z)   )cos( )( )( )(   1
)( GzLLzzfR SS

S
zS +−+= φΘΘ  (12) 

where, )(1 φF  and )(1 zG  are arbitrary functions. Putting 2/πφ = , the authors get 
)()2/( 11 zGF =π  i.e. )(1 zG  is a constant function. Ignoring the unimportant constant, we 

get 
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Putting in the Fourier expansion of )()( zf S
z  or of )()( zf S

φ from Al-Quaderi et al. 
(2010), the authors get 
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0ρ−+= SSS RLL . Note that, at the edge of the cylinder, we have, ,()(
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Stream function on the tilted endcaps: On the tilted end caps, the volume current densities 
are confined on the cap surfaces and hence 
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where )(ρZz ±= are the equations of the cap surfaces. Since the caps are tilted in an 

arbitrary angle )( , CK
r

α has in general, all three i.e. z  ,  , φρ -components. The 

components z,, 1,2 φρK are functions of ),( φρ  only, since the z-dependence may be 
eliminated by the equations of the surfaces )(ρZz ±= . Hence the authors get 
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which gives, using the linear independence of Dirac delta function and its derivative, 
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The unit vectors perpendicular to the endcaps are ραα e en z ˆ )cos( ˆ )sin(  ˆ 2,1 −±= . 

The component of K
r

 along 2,1̂n  are 
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which are zero using (20), as expected. 

The continuous surface current densities can be expressed as curls of some vector 
fields: 

2,1
)(

2,1 SK C
rrr

×∇=  (23) 

The authors assume that the only non-zero components of 2,1S
r

 are the ones 
perpendicular to the endcap surfaces and the tangential components are zero. This can 
always be done as there is a gauge freedom for choosing the components of S

r
 as 
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 and hence the authors have  
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which gives  
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The stream functions 2,1Ψ  are the normal components of 2,1S
r

 on the tilted endcaps: 
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The unit vectors tangential to the cap-surfaces are φê  and ±=  ˆ 2,1u  

ραα eez ˆ )(sinˆ )cos( + . Define two variables, 2,1u which increase along the tilted endcaps 
in the outward directions: 
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Hence, from the curl relation, the authors get 
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The general form of the surface current density components on the endcaps can be 
assumed from the symmetry considerations as in Al-Quaderi et al. (2010) as 

)sin( )  ( )  ( )(g    ),( 0
)(
2,1 φρΘρρΘρφρ ρρ −−= S

(C)C RK  (33) 

)cos( )  ( )  ( )(g    ),( 0
)(
2,1 φρΘρρΘρφρ φφ −−= S

(C)C RK  (34) 

)sin( )  ( )  ( )(g    ),( 0
)(
2,1 φρΘρρΘρφρ −−±= S

(C)
z

C
z RK  (35) 



DISCRETIZED CURRENT DISTRIBUTION FOR ACTIVE ENDCAP 149  

Putting the above into the stream function relations (29), (32) and upon integration, 
the authors get 
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where 2,1t  are distances along the normal direction to the endcaps. On the endcaps, 
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Hence, comparing the authors get, ),(),( 2,1 φρ tRzP = . Thus, ),( 2,1 φtR  is a constant 

function ofφ . Since, )sin()cos(2,1 ααρ zt ±−= , we can express )( 2,1tR  as a function of 

ρ  and z . For the perpendicular endcaps 2/πα = , ρ=2,1u  and zt ±=2,1 . Considering 

the case of the perpendicular endcaps, the authors can show that 0),( =zP ρ . Hence, the 
stream functions on the tilted endcaps are: 
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Fig. 2. The contour plots of the stream function on the cylindrical surface and the endcap at 

SLz = . The values are from 400 to 2600 Amp with the increment of 200 Amp for the set 
of coefficients chosen. The contours that end at the common edge on the cylinder meet at 
the same position φSR  with the corresponding contour on the cap. 

 
GENERATING WINDING PATTERNS USING THE STREAM FUNCTION METHOD 

It can be shown that (Brideson et al. (2002), Peeren (2003)), any two streamlines 
having a fixed amount of difference between the stream functions on them will contain 
equal amount of current between them. Thus, if the want to get the discretized paths 
along which a constant current flows, the authors need to find the contours of the stream 
function on the surfaces. Thus, the authors consider streamlines, on either the cylindrical 
surface or the endcaps, having values of the stream functions differing by some specified 
amount, equal to the intended current that the authors want to flow through the discretely 
placed wires. 

Let the maximum value of the stream function on a surface be maxmax IS = , the 
maximum current. We set N , the number of wires such that NII /max0 = , the specified 
amount of current determined by the engineering constraints. Then the the authors can 
plot sets of contours or equivalently streamlines on the surfaces, given by 

,0kIS = N,,k ...,2 1= and put the wires carrying the currents at points midway between 
the streamlines. 

Note that, for the tilted endcaps, the contours of the stream function on a 
perpendicular plane to the cylinder axis will always be the same, irrespective of the tilt 
angle. Two streamlines on the tilted caps, having specified values of the stream function 
on them will be separated by a distance )sin(/1 α  times larger than the distance between 
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similar streamlines on the perpendicular caps. However, at the edge ( )SS Lz,R ±==ρ , 
distance between the streamlines will be same (be it on the tilted or the perpendicular 
caps), and hence the same wire connections can be used at the edge coming from the 
cylindrical surface, for any tilted endcaps. 
 
RESULTS AND DISCUSSIONS 

The authors have used the stream function method for determining the discretized 
surface currents on the secondary surface using the continuous current density of Al-
Quaderi et al. (2010). The stream function method guarantees that the current density be 
continuous and provides a practical way of discretizing it. In the previous work of Baig et 
al. (2007) stream functions for the cylindrical as well as the caps were found separately. 
Their stream functions had closed loops on the cylindrical and endcap surfaces separately 
and current continuity between the cylindrical part and the caps were maintained by hand 
by chopping off parts of the cylinder and of the caps, to match the contours. This limited 
the number of loops on the endcaps as there was no guarantee that all the loops (on the 
cylinder and the caps) would match at the common edge. Compared to their method, our 
discretized currents are ensured to be continuous on the whole secondary, by virtue of the 
continuity of the current density. This provides the freedom to choose 0I  and hence N   
at The authors’ convenience, meeting the engineering constraints. 

The authors have solved for the stream function in the most general form since the 
expressions found can be applied to solely cylindrical surfaces or solely on the endcaps. 
Both of these have been solved previously in the literature (Wentao et al. (2007), Baig et. 
al. (2007)) but not in the general form as ours and has not been done previously. The 
angle α  can be varied in our geometry to include the previous work of Baig. et al. 
(2007) (for 090=α ) hence ours is a more general setup since we have more freedom 
over the optimization procedure having an extra parameter. The values of coefficients in 
the Fourier series expansions can be found by minimizing the energy functional and the 
deviation from required values of the magnetic field inside the region of interest and 
outside the MRI machine (shielding the B-filed).  
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