Journal of Bangladesh Academy of Sciences

Journal homepage: http://www.bas.org.bd/publications/jbas.html

Research Article

Implementation of intuitionistic fuzzy soft set theoretic scheme in decision making

Mousumi Akter, Kaniz Fatema and ${ }^{1}$ Md. Sahadat Hossain

Department of Mathematics, Pabna University of Science and Technology, Pabna, Bangladesh

ARTICLE INFO

Article History

Received: 18 December 2022
Revised: 02 April 2023
Accepted: 11 June 2023
Keywords: Fuzzy soft set (FSS), Intuitionistic Fuzzy soft set (IFSS), Resultant IFSS, Comparison table.

Abstract

Fuzzy soft set theory is becoming more and more important for coming up with coherent and logical answers to numerous real-world issues that are riddled with uncertainty, imprecision, and vagueness. The intuitionistic fuzzy soft set was investigated theoretically later on. Wherever uncertainty resulting from ambiguity manifests in more sophisticated ways, the combination of intuitionistic fuzzy set and intuitionistic fuzzy soft set is more efficient from an implementational standpoint. In this paper, the motivation of our work is to establish a new methodology to select an object from an inexact multiobserver data with the idea of intuitionistic fuzzy soft set theory. Our methodology includes an algorithm based on "and", "or" operation, max, min comparison data and comparison table.

Introduction

Most of our modern life problems, such as socioeconomic, medical science and engineering, involve inexact data and some of these problems are basically humanistic. In current days so many theories have been developed to dealing with inexact situation in a feasible way. Fuzzy set theory (Roy and Maji 2007; Zadeh 1965; Zimmerman 1996; Prade and Dubois, 1980), Intuitionistic fuzzy set theory (Atanassov 1986, 1994; Islam et al., 2018; Mahbub et al., 2019), vague sets (Gau and Buehrer 1993), etc. are some of them, and can be employed as an adequate tool for dealing with any inexact circumstances and uncertainty situated in a discipline. However, all of these theories are consisting of some constraints, which is the lack of the parameterization tool accompanied with the mentioned theories. To avoid the limitations the idea of soft set theory is inaugurated by Molodtsov (1999), Pawlak (1982, 1994), etc. which has been employed in varied vexation. The problem of object determination has placed prime implication in this day. Majji et al., 2001;

2003 and Roy (2007) analyzes the concept of comparison table on SS theory and established a method for decision making problems. In this article we describe an application of IFSS theory in decision making problem and improve Majji and Roy (2001, 2003, 2007) given method to investigate a suitable object from a multi-observer data for a decision making problem. Section two consists of a summary note on the preliminaries concerned to FS theory and IFS theory. Later then section three explains a brief summary on soft set theory, fuzzy soft set theory and intuitionistic fuzzy soft set theory. The mathematical algorithm, used in our paper is illustrated in section four. A concise discussion of a decision making problem and its solution is illustrated in section five. Finally, the conclusion is narrated in section six.

Preliminary

In latter section we will briefly reflex the primary concept of FS and IFS which would be obligate for posterior platform.

[^0]
Fuzzy Set

Consider U be the universe of discourse. A fuzzy set V in U is characterized by a mapping μ_{V} from U to [0,1](Zadeh 1965), that is, $\mu_{V}: U \rightarrow[0,1]$. Where, μ_{V} describes the grade of membership. Thus V can be defined by the set of order pair $V=\left\{\left(v, \mu_{V}(v)\right) \mid v \in U\right\}$.

Union of Two FS

The union of two fuzzy subsets A_{1} and A_{2} over the same universe of discourse U is symbolized by $A_{1} \cup A_{2}$ and is defined by (Zadeh 1965; Zimmerman 1996) $\left(A_{1} \cup A_{2}\right)(a)=\left\{\left(a, \max \left(\mu_{A_{1}}(a), \mu_{A_{2}}(a)\right)\right), \forall a \in U\right\}$.

Intersection of Two FS

The intersection of two fuzzy subsets A_{1} and A_{2} over the same universe of discourse U is symbolized by $A_{1} \cap A_{2}$ and is defined by (Zadeh 1965) $\left(A_{1} \cap A_{2}\right)(a)=\left\{\left(a, \min \left(\mu_{A_{1}}(a), \mu_{A_{2}}(a)\right)\right), \forall a \in U\right\}$.

Intuitionistic Fuzzy Set

Consider U be the universe of discourse. A IFS V in U is characterize by two mappings μ_{V} and γ_{V} from U to $[0,1]$ (Atanassov et al., 1986), that is, $\mu_{V}: U \rightarrow[0,1]$ and $\gamma_{V}: U \rightarrow[0,1]$ such that value of μ_{V} and γ_{V} describe the grad of membership and non-grad of membership gradually. Thus V can be defined as the order triplet

$$
V=\left\{\left(a, \mu_{V}(a), \gamma_{V}(a)\right) \mid a \in U\right\}
$$

Here

$$
\left(\mu_{V}(a)+\gamma_{V}(a)\right) \leq 1
$$

Union of Two IFS

Union of two IFS's A_{1} and A_{2} over the same universe of discourse U is symbolized by $A_{1} \cup A_{2}$ and is defined for all $\forall a \in U$ as (Atanassov 1986)
$\left(A_{1} \cup A_{2}\right)(a)=\left\{\left(a, \max \left(\mu_{A_{1}}(a), \mu_{A_{2}}(a)\right), \min \left(\gamma_{A_{1}}(a), \gamma_{A_{2}}(a)\right)\right\}\right.$ "‘and" Operation of Two Soft Sets

Here

$$
\mu_{A_{1}}(a)+\gamma_{A_{1}}(a) \leq 1 \text { and } \mu_{A_{2}}(a)+\gamma_{A_{2}}(a) \leq, \forall a \in U
$$

For two soft sets $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ over the same

Intersection of Two IFS

The intersection of two intuitionistic fuzzy subsets symbolized by $A_{1} \cap A_{2}$ and is defined $\forall a \in U$ as (Atanassov 1986)
$\left(A_{1} \cap A_{2}\right)(a)=\left\{\left(a, \min \left(\mu_{A_{1}}(a), \mu_{A_{2}}(a)\right), \max \left(\gamma_{A_{1}}(a), \gamma_{A_{2}}(a)\right)\right\}\right.$.

Here
$\mu_{A_{1}}(a)+\gamma_{A_{1}}(a) \leq 1$ and $\mu_{A_{2}}(a)+\gamma_{A_{2}}(a) \leq 1, \forall a \in U$.

Fuzzy Soft Sets in Decision Making

This section consists of some basic definition of fuzzy soft set theory, great portion of them explained by Maji (2001). Let, the set of m objects $U=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{m}\right\}$ is characterized by a set of parameters $\left\{E_{1}, E_{2}, E_{3}, \cdots, E_{i}\right\} \quad$ The parameter extension Q may be formed as

$$
Q \supseteq\left\{E_{1}, E_{2}, E_{3}, \cdots, E_{i}\right\}
$$

where each parameter set E_{i} stand for ith class of parameters and the components of E_{i} recite an especial characteristic set.

Soft Set

Presume U and Q is the universe of discourse and set of parameters gradually. For the power set $P(U)$ of U and a subset B of Q define a mapping g from B to $P(U)$ as $g: B \rightarrow P(U)$. The couple $(g, P(U))$ is known as a soft set on U (Molodtsov 1999; Roy and Maji 2007).

Soft Subset

Consider two soft sets $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ over the same universe of discourse U. Then $\left(F_{1}, C_{1}\right)$ is said to be a subset of $\left(F_{2}, C_{2}\right)$ if (Molodtsov 1999)
(i) $C_{1} \subset C_{2}$ and
(ii) $\forall b \in B, f_{1}(b)$ and $f_{2}(b)$ are uniform approximations.
䢂 universe of discourse U, " $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ " is
symbolized by $\left(F_{1}, C_{1}\right) \wedge\left(F_{2}, C_{2}\right)$ and is defined as (Molodtsov 1999)

$$
\left(F_{1}, C_{1}\right) \wedge\left(F_{2}, C_{2}\right)=\left(F_{3}, C_{1} \times C_{2}\right)
$$

where

$$
F_{3}(a, b)=F_{1}(a) \cap F_{2}(b), \forall(a, b) \in C_{1} \times C_{2} .
$$

"or" Operation of Two Soft Sets

For two soft sets $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ over the same universe of discourse U, " $\left(F_{1}, C_{1}\right)$ or $\left(F_{2}, C_{2}\right)$ " is symbolized as $\left(F_{1}, C_{1}\right) \vee\left(F_{2}, C_{2}\right)$ and is defined by (Molodtsov 1999)

$$
\left(F_{1}, C_{1}\right) \vee\left(F_{2}, C_{2}\right)=\left(F_{4}, C_{1} \times C_{2}\right),
$$

where,

$$
F_{4}(a, b)=F_{1}(a) \cup F_{2}(b), \forall(a, b) \in C_{1} \times C_{2} .
$$

Fuzzy Soft Set

Presume $P(U)$ to be the class of all fuzzy subsets of U and $E_{i} \subseteq Q$. Then the pair $\left(f_{i}, E_{i}\right)$ is known as a FSS over U, where f_{i} describe a mapping from E_{i} to $P(U)$ that is,

$$
f_{i}: E_{i} \rightarrow P(U)
$$

Fuzzy Soft Subset

Presume two FSS $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ over the same universe of discourse U. Then $\left(F_{1}, C_{1}\right)$ is said to be a subset of $\left(F_{2}, C_{2}\right)$ if (Roy and Maji 2007)
(i) $C_{1} \subset C_{2}$, and
(ii) $\forall a \in C, F_{1}(a)$ is a fuzzy subset of $F_{2}(a)$.

"and" Operation of Two FSS

For two soft sets $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ over the same universe of discourse U, " $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ " is symbolized by $\left(F_{1}, C_{1}\right) \wedge\left(F_{2}, C_{2}\right)$ and is defined as (Molodtsov 1999)

$$
\left(F_{1}, C_{1}\right) \wedge\left(F_{2}, C_{2}\right)=\left(F_{3}, C_{1} \times C_{2}\right)
$$

where

$$
F_{3}(a, b)=F_{1}(a) \cap F_{2}(b), \forall(a, b) \in C_{1} \times C_{2}
$$

"or" Operation of Two Fuzzy Soft Sets
Presume two FSS $\left(F_{1}, C_{1}\right)$ and $\left(F_{2}, C_{2}\right)$ over the same universe of discourse U. Then " $\left(F_{1}, C_{1}\right)$ or $\left(F_{2}, C_{2}\right)$ "
is denoted by $\left(F_{1}, C_{1}\right) \vee\left(F_{2}, C_{2}\right)$ and is defined by (Roy and Maji 2007)

$$
\left(F_{1}, C_{1}\right) \vee\left(F_{2}, C_{2}\right)=\left(F_{4}, C_{1} \times C_{2}\right),
$$

where,

$$
F_{4}(a, b)=F_{1}(a) \bigcup F_{2}(b), \forall(a, b) \in C_{1} \times C_{2}
$$

Intuitionistic Fuzzy Soft Set

Suppose $Q(U)$ explain the class of all IFS's of U and $E_{i} \subseteq Q$. IFSS over U is denoted by $\left(g_{i}, E_{i}\right)$ where g_{i} defined as

$$
g_{i}: E_{i} \rightarrow Q(U)
$$

Intuitionistic Fuzzy Soft Subset

Consider two IFSS's $\left(G_{1}, C_{1}\right)$ and $\left(G_{2}, C_{2}\right)$ over the same universe of discourse U. Then $\left(G_{1}, C_{1}\right)$ is said to be a subset of $\left(G_{2}, C_{2}\right)$ if
(i) $C_{1} \subset C_{2}$, and
(ii) $\forall a \in C_{1}, G_{1}(a)$ is a intuitionistic fuzzy subset of $G_{2}(a)$.

"and" operation of Two IFSS

Consider two IFSS's $\left(G_{1}, C_{1}\right)$ and $\left(G_{2}, C_{2}\right)$ over the same universe of discourse U. Then " $\left(G_{1}, C_{1}\right)$ and $\left(G_{2}, C_{2}\right) "$ is denoted by $\left(G_{1}, C_{1}\right) \wedge\left(G_{2}, C_{2}\right)$ and is defined by

$$
\left(G_{1}, C_{1}\right) \wedge\left(G_{2}, C_{2}\right)=\left(G_{3}, C_{1} \times C_{2}\right)
$$

where

$$
G_{3}(a, b)=G_{1}(a) \cap G_{2}(b), \forall a \in C_{1} \text { and } b \in C_{2},
$$

and " \bigcap " represent the intersection of two IFS.

"or" operation of Two IFSS

Consider two IFSS's $\left(G_{1}, C_{1}\right)$ and $\left(G_{2}, C_{2}\right)$ over the same universe of discourse U. Then " $\left(G_{1}, C_{1}\right)$ or $\left(G_{2}, C_{2}\right) "$ is denoted by $\left(G_{1}, C_{1}\right) \vee\left(G_{2}, C_{2}\right)$ and is defined by

$$
\left(G_{1}, C_{1}\right) \vee\left(G_{2}, C_{2}\right)=\left(G_{4}, C_{1} \times C_{2}\right),
$$

where

$$
G_{4}(a, b)=G_{1}(a) \cup G_{2}(b), \forall a \in C_{1} \text { and } b \in C_{2},
$$

" \bigcup " represent the union of two intuitionistic fuzzy sets.

Comparison Table and Algorithm

In a comparison table count of rows and columns are identical and they are specified by the objects ϑ_{i} of the universe U. In our paper the entries $C_{i j}$ of the comparison table is illustrated by the count of parameters for those the grade of membership ϑ_{i} differ or same to the grade of membership ϑ_{i}. If k describe count of parameters in a IFSS, then disputably $0 \leq C_{i j} \leq k$. If r_{i} and c_{j} represent the row sum and the column sum respectively of an object ϑ_{i} then it can be defined as

$$
r_{i}=\sum_{j=1}^{n} C_{i j} \text { and } c_{j}=\sum_{i=1}^{n} C_{i j}
$$

where n represent the number of objects. In this paper our aim is to select an adequate object from a class of objects regarding to a class of choice parameters Q . We thus developed an algorithm to determinate an object from some multiobservers data specified by color, shape and price.

Algorithm

1. Input the parameter set Q .
2. Input the IFSS's $\left(F_{1}, C\right),\left(F_{2}, S\right)$, and $\left(F_{3}, P\right)$.
3. Perform " $\left(F_{1}, C\right)$ and $\left(F_{2}, S\right)$ ".
4. Illustrate a comparison data for row max and row min in case of membership and non-membership value.
5. Select a new resultant IFSS $\left(R_{1}, Q\right)$, with respect to the comparison data.
6. Finally calculate the corresponding resultant IFSS $\left(R_{2}, Q\right)$, for the IFSS's $\left(F_{1}, C\right)$, $\left(F_{2}, S\right)$, and $\left(F_{3}, P\right)$, and place it in tabular form.
7. Build up a comparison-table for the IFSS $\left(R_{2}, Q\right)$, and calculate r_{i} and c_{i} for alli.
8. Calculate $V_{i}=r_{i}-c_{i}$, for all i , define as score.
9. If $V_{k}=\max \left\{V_{i}\right\}$, then the decision is V_{k}.

Application

Presume $O=\left\{\vartheta_{1}, \vartheta_{2}, \vartheta_{3}, \vartheta_{4}, \vartheta_{5}, \vartheta_{6}\right\}$, to be the class of components having varied colors, shape and price. $\mathrm{Q}=\{$ darkish, stone, grey, rosy, big, small, very small, medium, very big, very cheap, cheap, high, average\}, represent the set of parameters consisting of three subsets C, S and P. Here C stands for color space, S for size space and P for price space gradually. Take $\operatorname{IFSS}\left(F_{1}, C\right)$, relate the components having color space, $\operatorname{IFSS}\left(F_{2}, S\right)$, relate the 'components having size' and IFSS $\left(F_{3}, P\right)$, relate the 'the components having price'. Our motivation is to ascertain the desired component from the multi observer's fuzzy data, mark by varied observers, in terms of IFSS $\left(F_{1}, C\right),\left(F_{2}, S\right)$, and $\left(F_{3}, P\right)$, as described before. All of the three IFSS are represented in tabular form in Tables. $1(a)-1(c)$.

	Darkish	Stone	Grey	Rosy
ϑ_{1}	$(0.3,0.4)$	$(0.4,0.5)$	$(0.6,0.2)$	$(0.9,0.1)$
ϑ_{2}	$(0.3,0.5)$	$(0.9,0.1)$	$(0.3,0.6)$	$(0.5,0.2)$
ϑ_{3}	$(0.4,0.4)$	$(0.5,0.4)$	$(0.8,0.1)$	$(0.7,0.1)$
ϑ_{4}	$(0.8,0.1)$	$(0.2,0.7)$	$(0.4,0.4)$	$(0.8,0.2)$
ϑ_{5}	$(0.7,0.3)$	$(0 ., 0.6)$	$(0.6,0.3)$	$(0.5,0.2$
ϑ_{6}	$(0.9,0.1)$	$(0.2,0.6)$	$(0.4,0.3)$	$(0.3,0.5)$

Table 1(a): $\operatorname{IFSS}\left(F_{1}, C\right)$.

	Big	Very big	Small	Very small	Medium
ϑ_{1}	$(0.4,0.3)$	$(0.2,0.7)$	$(0.8,0.2)$	$(0.6,0.2)$	$(0.5,0.3)$
ϑ_{2}	$(0.8,0.1)$	$(0.6,0.1)$	$(0.3,0.5)$	$(0.1,0.6)$	$(0.7,0.2)$
ϑ_{3}	$(0.6,0.2)$	$(0.4,0$	$3)$	$(0.4,0.4)$	$(0.1,0.5)$

Table 1(b): $\operatorname{IFSS}\left(F_{2}, S\right)$.

	Very cheap	Cheap	High	Average
ϑ_{1}	$(0.3,0.5)$	$(0.4,0.4)$	$(0.1,0.7)$	$(0.9,0.1)$
ϑ_{2}	$(0.6,0.2)$	$(0.5,0.3)$	$(0.4,0.4)$	$(0.5,0.2)$
ϑ_{3}	$(0.5,0.4)$	$(0.6,0.1)$	$(0.3,0.4)$	$(0.6,0.1)$
ϑ_{4}	$(0.7,0.2)$	$(0.6,0.3)$	$(0.6,0.2)$	$(0.3,0.6)$
ϑ_{5}	$(0 ., 0.3)$	$(0.6,0.2)$	$(0.5,03)$	$(0.4,0.5)$
ϑ_{6}	$(0.8,0.1)$	$(0.7,0.1)$	$(0.7,0.3)$	$(0.9,0.1)$

meet	f_{21}	f_{22}	f_{23}	f_{24}	f_{25}	raw max
ϑ_{1}	0.4	0.2	0.4	0.4	0.4	0.4
ϑ_{2}	0.8	0.6	0.3	0.1	0.7	0.8
ϑ_{3}	0.5	0.4	0.4	0.1	0.5	0.5
ϑ_{4}	0.2	0.2	0.2	0.1	0.2	0.2
ϑ_{5}	0.2	0.1	0.3	0.3	0.3	0.3
ϑ_{6}	.2	0.2	0.2	0.2	0.2	0.2
CD	1	4	2	3	1	
join	f_{21}	f_{22}	f_{23}	f_{24}	f_{25}	raw min
ϑ_{1}	0.5	0.7	0.5	0.5	0.5	0.5
ϑ_{2}	0.1	0.1	0.5	0.6	0.2	0.1
ϑ_{3}	0.4	0.4	0.4	0.5	0.4	0.4
ϑ_{4}	0.7	0.7	0.7	0.7	0.7	0.7
ϑ_{5}	0.6	0.6	0.6	0.6	0.6	0.6
ϑ_{6}	0.6	0.6	0.6	0.6	0.6	0.6
CD	0	1	0	2	1	

Table 2(b): $f_{2 j}($ for $\mathbf{j}=1,2,3,4,5)$

meet	f_{31}	f_{32}	f_{33}	f_{34}	f_{35}	raw max
ϑ_{1}	0.4	0.2	0.6	0.6	0.5	0.6
ϑ_{2}	0.3	0.3	0.3	0.1	0.3	0.3
ϑ_{3}	0.6	0.4	0.4	0.1	0.7	0.7
ϑ_{4}	0.4	0.4	0.2	0.1	0.4	0.4
ϑ_{5}	0.2	0.1	0.6	0.6	0.6	0.6
ϑ_{6}	0.3	0.2	0.4	0.6	0.4	0.6
CD	4	4	3	3	2	

join	f_{31}	f_{32}	f_{33}	f_{34}	f_{35}	raw min
ϑ_{1}	0.3	0.7	0.2	0.2	0.3	0.2
ϑ_{2}	0.6	0.6	0.6	0.6	0.6	0.6
ϑ_{3}	0.2	0.3	0.4	0.5	0.1	0.1
ϑ_{4}	0.4	0.4	0.6	0.7	0.5	0.4
ϑ_{5}	0.5	0.6	0.3	0.3	0.3	0.3
ϑ_{6}	0.6	0.5	0.3	0.3	0.4	0.3
CD	4	4	2	2	3	

Table 2(c): $f_{3 j}($ for $\mathbf{j}=1,2,3,4,5)$

meet	f_{41}	f_{42}	f_{43}	f_{44}	f_{45}	raw max
ϑ_{1}	0.4	0.2	0.8	0.6	0.5	0.8
ϑ_{2}	0.5	0.5	0.3	0.1	.5	0.5
ϑ_{3}	0.6	0.	0.4	0.1	0.7	0.7
ϑ_{4}	0.8	0.8	0.2	0.1	0.4	0.8
ϑ_{5}	0.2	0.1	0.5	0.5	0.5	0.5
ϑ_{6}	0.3	0.2	0.3	0.3	0.3	0.3
CD	3	4	3	4	2	
join	f_{41}	f_{42}	f_{43}	f_{44}	f_{45}	raw min
ϑ_{1}	0.3	0.7	0.2	0.2	0.3	0.2
ϑ_{2}	0.2	0.2	0.5	0.6	0.2	0.2
ϑ_{3}	0.2	0.3	0.4	0.5	0.1	0.1
ϑ_{4}	0.2	0.2	0.6	0.7	0.5	0.2
ϑ_{5}	0.5	0.6	0.2	0.2	0.3	0.2
ϑ_{6}	0.6	0.5	0.5	0.5	0.5	0.5
CD	3	3	3	3	3	

Table 2(d): $f_{4 j}($ for $\mathbf{j}=1,2,3,4,5)$

In each table CD stand for comparison data, which we determine by comparing the raw min and raw max column with the other column entries for membership and non-membership values respectively.
The parameters $Q=\left\{f_{11}, f_{13}, f_{15}, f_{21}, f_{23}, f_{25}\right\}$ are then computed by using the comparison data for row maxima and column minima. Here we choose those of the strategies which have comparison value zero, one and two. Let us introduce the new resultant IFSS by $\left(R_{1}, Q\right)$, that's represented in Table 3.

f_{11}	f_{13}	f_{15}	f_{21}	f_{23}	f_{25}
$(0.3,0.4)$	$(0.3,0.4)$	$(0.3,0.4)$	$(0.4,0.5)$	$(0.4,0.5)$	$(0.4,0.5)$
$(0.3,0.5)$	$(0.3,0.5)$	$(0.3,0.5)$	$(0.8,0.1)$	$(0.3,0.5)$	$(0.7,0.2)$
$(0.4,0.4)$	$(0.4,0.4)$	$(0.4,0.4)$	$(0.5,0.4)$	$(0.4,0.4)$	$(0.5,0.4)$
$(0.8,0.1)$	$(0.2,0.6)$	$(0.4,0.5)$	$(0.2,0.7)$	$(0.2,0.7)$	$(0.2,0.7)$
$(0.2,0.5)$	$(0.7,0.3)$	$(0.7,0.3)$	$(0.2,0.6)$	$(0.3,0.6)$	$(0.3,0.6)$
$(0.3,0.6)$	$(0.8,0.1)$	$(0.5,0.4)$	$(0.2,0.6)$	$(0.2,0.6)$	$(0.2,0.6)$

Table 3: Resultant IFSS $\left(R_{1}, Q\right)$.

Finally Performing the same logical formula for " $\left(R_{1}, Q\right)$ " and " $\left(F_{3}, P\right)$ " we achive 24 new strategies of the type $d_{i j}$, where

$$
d_{i j}=\left(\left(\mu_{R_{1}\left(a_{i}\right)} \wedge \mu_{F_{3}\left(b_{j}\right)}\right),\left(\lambda_{R_{1}\left(a_{i}\right)} \vee \lambda_{F_{3}\left(b_{j}\right)}\right)\right)
$$

for
$1 \leq i \leq 6$ and $1 \leq j \leq 4$, which are represented in
Tables. $4(a)-4(f)$.

meet	d_{11}	d_{12}	d_{13}	d_{14}	raw max
ϑ_{1}	0.3	0.3	0.1	0.3	0.3
ϑ_{2}	0.3	0.3	0.3	0.3	0.3
ϑ_{3}	0.4	0.4	0.3	0.4	0.4
ϑ_{4}	0.7	0.6	0.6	0.3	0.7
ϑ_{5}	0.2	0.2	0.2	0.2	0.2
ϑ_{6}	0.3	0.3	0.3	0.3	0.3
CD	0	1	3	1	
join	d_{11}	d_{12}	d_{13}	d_{14}	raw min
ϑ_{1}	0.5	0.4	0.7	0.4	0.4
ϑ_{2}	0.5	0.5	0.5	0.5	0.5
ϑ_{3}	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.2	0.3	0.2	0.6	0.2
ϑ_{5}	0.5	0.5	0.5	0.5	0.5
ϑ_{6}	0.6	0.6	0.6	0.6	0.6
CD	1	1	1	1	

Table 4(a): $d_{1 j}($ for $\mathrm{j}=1,2,3,4)$.

meet	d_{21}	d_{22}	d_{23}	d_{24}	raw max
ϑ_{1}	0.3	0.3	0.1	0.3	0.3
ϑ_{2}	0.3	0.3	0.3	0.3	0.3
ϑ_{3}	0.4	0.4	0.3	0.4	0.4
ϑ_{4}	0.2	0.2	0.2	0.2	0.2
ϑ_{5}	0.6	0.6	0.5	0.4	0.
ϑ_{6}	0.8	0.7	0.7	0.8	0.8
CD	0	1	4	1	

join	d_{21}	d_{22}	d_{23}	d_{24}	raw min
ϑ_{1}	0.5	0.4	0.7	0.4	0.4
ϑ_{2}	0.5	0.5	0.5	0.5	0.5
ϑ_{3}	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.6	0.6	0.6	0.	0.6
ϑ_{5}	0.3	0.3	0.3	0.5	0.3
ϑ_{6}	0.1	0.1	0.3	0.1	0.1
CD	1	0	2	1	

Table 4(b): $d_{2 j}($ for $\mathrm{j}=1,2,3,4)$.

meet	d_{31}	d_{32}	d_{33}	d_{34}	raw max
ϑ_{1}	0.3	0.3	0.1	0.3	0.3
ϑ_{2}	0.3	0.3	0.3	0.3	0.3
ϑ_{3}	0.4	0.4	0.3	0.4	0.4
ϑ_{4}	0.4	0.4	0.4	0.3	0.4
ϑ_{5}	0.6	0.6	0.5	0.4	0.6
ϑ_{6}	0.5	0.5	0.5	0.5	0.5
CD	0	0	3	2	
join	d_{31}	d_{32}	d_{33}	d_{34}	raw min
ϑ_{1}	0.5	0.4	0.7	0.4	0.4
ϑ_{2}	0.5	0.5	0.5	0.5	0.5
ϑ_{3}	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.5	0.5	0.5	0.6	0.5
ϑ_{5}	0.3	0.3	0.3	0.5	0.3
ϑ_{6}	0.4	0.4	0.4	0.4	0.4
CD	1	0	0	2	

Table 4(c): $d_{3 j}($ for $\mathrm{j}=1,2,3,4)$.

meet	d_{41}	d_{42}	d_{43}	d_{44}	raw max
ϑ_{1}	0.3	0.4	0.1	0.4	0.4
ϑ_{2}	0.6	0.5	0.4	0.5	0.6
ϑ_{3}	0.5	0.5	0.3	0.5	0.5
ϑ_{4}	0.2	0.2	0.2	0.2	0.2
ϑ_{5}	0.2	0.2	0.2	0.2	0.2
ϑ_{6}	0.2	0.2	0.2	0.2	0.2
CD	1	1	3	1	

join	d_{41}	d_{42}	d_{43}	d_{44}	raw min
ϑ_{1}	0.5	0.5	0.7	0.5	0.5
ϑ_{2}	0.2	0.3	0.4	0.2	0.2
ϑ_{3}	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.7	0.7	0.7	0.7	0.7
ϑ_{5}	0.6	0.6	0.6	0.6	0.6
ϑ_{6}	0.6	0.6	0.6	0.6	0.6
CD	0	1	2	0	

Table 4(d): $d_{4 j}($ for $\mathrm{j}=1,2,3,4)$.

meet	d_{51}	d_{52}	d_{53}	d_{54}	raw max
ϑ_{1}	0.3	0.4	0.1	0.4	0.4
ϑ_{2}	0.3	0.3	0.3	0.3	0.3
ϑ_{3}	0.4	0.4	0.3	0.4	0.4
ϑ_{4}	0.2	0.2	0.2	0.2	0.2
ϑ_{5}	0.3	0.3	0.3	0.3	0.3
ϑ_{6}	0.2	0.2	0.2	0.2	0.2
CD	1		0	2	0
join	d_{51}	d_{52}	d_{53}	d_{54}	raw min
ϑ_{1}	0.5	0.5	0.7	0.5	0.5
ϑ_{2}	0.5	0.5	0.5	0.5	0.5
ϑ_{3}	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.7	0.7	0.7	0.7	0.7
ϑ_{5}	0.6	0.6	0.6	0.6	0.6
ϑ_{6}	0.6	0.6	0.6	0.6	0.6
CD	0	0	1	0	

Table 4(e): $d_{5 j}$ (for $\left.\mathbf{j}=1,2,3,4\right)$.

meet	d_{61}	d_{62}	d_{63}	d_{64}	raw max
ϑ_{1}	0.3	0.4	0.1	0.4	0.4
ϑ_{2}	0.6	0.5	0.4	0.5	0.6
ϑ_{3}	0.5	0.5	0.3	0.5	0.5
ϑ_{4}	0.2	0.2	0.2	0.2	0.2
ϑ_{5}	0.3	0.3	0.3	0.3	0.3
ϑ_{6}	0.2	0.2	0.2	0.2	0.2
CD	1	1	3	1	

join	d_{61}	d_{62}	d_{63}	d_{64}	raw min
ϑ_{1}	0.5	0.5	0.7	0.5	.5
ϑ_{2}	0.2	0.3	0.4	0.2	0.2
ϑ_{3}	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.7	0.7	0.7	0.7	0.7
ϑ_{5}	0.6	0.6	0.6	0.6	0.6
ϑ_{6}	0.6	0.6	0.6	0.6	0.6
CD	0	1	2	0	

Table 4(f): $d_{6 j}($ for $\mathrm{j}=1,2,3,4)$.
On basis of the previous algorithm the final resultant IFSS is view in Table 5. Here strategies comparison values are zero and one.

MB	d_{11}	d_{21}	d_{31}	d_{32}	d_{52}	d_{54}
ϑ_{1}	0.3	0.3	0.3	0.3	0.4	0.4
ϑ_{2}	0.3	0.3	0.3	0.3	0.3	0.3
ϑ_{3}	0.4	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.7	0.2	0.4	0.4	0.2	0.2
ϑ_{5}	0.2	0.6	0.6	0.6	0.3	0.3
ϑ_{6}	0.3	0.8	0.5	0.5	0.2	0.2
NMB	d_{11}	d_{21}	d_{31}	d_{32}	d_{52}	d_{54}
ϑ_{1}	0.5	0.5	0.5	0.4	0.5	0.5
ϑ_{2}	0.5	0.5	0.5	0.5	0.5	0.5
ϑ_{3}	0.4	0.4	0.4	0.4	0.4	0.4
ϑ_{4}	0.2	0.6	0.5	0.5	0.7	0.7
ϑ_{5}	0.5	0.3	0.3	0.3	0.6	0.6
ϑ_{6}	0.6	0.1	0.4	0.4	0.6	0.6

Table 5: Resultant IFSS.

Tables. 6(a)-6(b) illustrates the comparison-table of the above resultant IFSS.

MV	ϑ_{1}	ϑ_{2}	ϑ_{3}	ϑ_{4}	ϑ_{5}	ϑ_{6}
ϑ_{1}	6	6	2	3	3	3
ϑ_{2}	4	6	0	4	4	4
ϑ_{3}	6	6	6	5	3	3
ϑ_{4}	3	3	3	6	1	3
ϑ_{5}	3	5	3	5	6	4
ϑ_{6}	4	4	3	5	2	6

Table 6(a): Comparison table for membership values (MV).

NMV	ϑ_{1}	ϑ_{2}	ϑ_{3}	ϑ_{4}	ϑ_{5}	ϑ_{6}
ϑ_{1}	6	6	2	3	3	3
ϑ_{2}	4	6	0	4	4	4
ϑ_{3}	6	6	6	5	3	3
ϑ_{4}	3	3	3	6	1	3
ϑ_{5}	3	5	3	5	6	4
ϑ_{6}	4	4	3	5	2	6

Table 6(b): Comparison table for membership values (NMV).

And, finally we calculate the row-sum (RS), column-sum (CS). The computation table is demonstrated in Table 6(c).

MV	RS	CS	Diff	NMV	RS	CS	Diff
ϑ_{1}	23	26	-3	ϑ_{1}	25	26	-1
ϑ_{2}	22	30	-8	ϑ_{2}	22	28	-6
ϑ_{3}	29	17	12	ϑ_{3}	31	14	17
ϑ_{4}	19	28	-9	ϑ_{4}	14	31	-17
ϑ_{5}	26	19	7	ϑ_{5}	27	19	8
ϑ_{6}	24	23	1	ϑ_{6}	23	24	-1

Table 6(c): Difference of RS and CS for MV and NMV.

From the above computation, we observe that for $k=3$ the difference is maximum, thus the decision is in favors of selecting ϑ_{3}.

Conclusion

In our present work we deliver an appliance of IFSS theory in object determination problem. For the convenience of our work, we first select some parameters like color, size and price for the selected objects and define them with the concept of IIFS in Tables. 1(a) - 1(c). Sequentially using "and" operation and comparison data for the three IIFSs, we get a resultant IIFS. Finally, by formatting and analyzing a comparison table for the resultant IFSS we ascertain that the desired object is ϑ_{3}.

References

Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986; 20(1): 87-96.

Atanassov K. Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1994; 64(2): 159-174.

Gau WL and Buehrer DJ. Vague sets, IEEE Trans. System Man Cybernet. 1993; 23 (2): 610-614.

Islam MS, Hossain MS and Asaduzzaman M. Level separation on Intuitionistic fuzzy T1 spaces. J. Bangladesh Acad. Sci 2018; 42(1): 73-85.

Mahbub MA, Hossain MS and Hossain MA. On Qcompactness in Intuitionistic Fuzzy topological spaces. J. Bangladesh Acad. Sci. 2019; 43(2): 197-230.

Maji PK, Biswas R and Roy AR. Fuzzy soft sets. J. Fuzzy Math. 2001; 9(3): 589-602.

Maji PK, Biswas R and Roy AR. Soft set theory. Comput. Math. Appl. 2003; 45(4-5): 555-562.

Molodtsov D. Soft set theory-first results. Comput. Math. Appl. 1999; 37: 19-31.
Pawlak Z. Rough sets, Internat. J. Inform. Comput. Sci. 1982; 11: 341-356.

Pawlak Z. Hard set and soft sets, ICS Research Report. Ins. Comput. Sci. Poland. 1994

Prade H and Dubois D. Fuzzy Sets and Systems Theory and Applications. Academic Press, London. 1980.

Roy AR and Maji PK. A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 2007; 203(2): 412-418.

Zadeh LA. Fuzzy sets. Infor Control. 1965; 8: 338-353.
Zimmerman HJ. Fuzzy Set Theory and Its applications. Kluwer Academic Publishers, Boston. 1996.

[^0]: *Corresponding author: <mousumiakter@pust.ac.bd, mousumiakter.ru@gmail.com>
 ${ }^{1}$ Department of Mathematics University of Rajshahi, Rajshahi, Bangladesh

