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 This paper derives the conditions under which the sum    

of squares of (2N+1) natural numbers in the arithmetic 

progression is a perfect square. It is shown that the 

problem leads to a Diophantine equation, which in turn 

indicates that there is, in fact, an infinite number of such 

numbers. Some particular cases are investigated. 
 

Introduction 
 

It is well-known that, for any integer n (  1),  

13 + 23 + 33 + … + n3 =
2(  1)

2
 [ ]n n

,


 

which expresses the interesting property that the sum 

of cubes of the first n (positive) integers is a perfect 

square. This paper finds the condition that the sum of 

squares of (2N+1) integers in the arithmetic progression 

is a square. It is found that the problem reduces to that 

of solving a Diophantine equation. 

 Sastry (1992) raised the problem of characterizing 

the arithmetic progression of natural numbers of 

length 49, whose sum of squares is also a square. 

This paper generalizes the problem of Sastry (1992) 

to the case of numbers in the arithmetic progression 

of length (2N+1). This is done in Section 3. Some 

background materials related to the problem are 

given in the next section. Section 4 deals with some 

particular cases. The paper is concluded with some 

remarks in Section 5. 

Background Material 

This section gives some results that would be needed 

later in Section 3. In Section 3, it is  shown that the 

problem of finding a sequence of (2N+1) (positive) 

integers in arithmetic progression whose sum of 

squares is  itself  a square  reduces  to the problem 

of solving a  Diophantine  equation of the form           

a2 = b2 + mc2, where m ( > 0) is an integer. In solving 

the equation, note that, if a = a0, b = b0 and c = c0 is a 

solution, so also is a = sa0, b = sb0, c = sc0 for any 

integer s > 0. It is thus sufficient to find the primitive 

solution of the equation. The lemma below gives the 

solution of the Diophantine equation a2 = b2 + 2c2. 

Lemma 2.1: Consider the Diophantine equation 

a2 = b2 + 2c2, gcd(a, b, c) = 1.          (2.1) 

The (positive) primitive solutions of the above 

equation are 

a = 2 + 22, 2 22b    , c = 2,   (2.2) 

where  and  are (positive) integers with   gcd(, ) 

= 1 and  is odd. 

Proof: Clearly, any b satisfying the equation (2.1) 

must be odd, which in turn implies that a is odd and c 

is even. It then follows that  in (2.2) must be odd. 

Now, with a, b, c given in (2.2), 

a2 = (2 + 22)2 = (2 – 22)2 + 82 2 = b2 + 2c2, 

which shows that (2.2) is indeed a solution of the 

equation (2.1). 

Lemma 2.2: Consider the Diophantine equation  

a2 = b2 + pc2, gcd(a, b, c) = 1,          (2.3) 

where p (  3) is a prime. A set of primitive solutions 

of the equation (2.3) are 
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a =  + p2, b =  – p2, c = 2,       (2.4) 

where  and  are (positive) integers with   , 

gcd(, ) = 1,  and  are of opposite parity (that is, 

one of  and  is odd, and the other one is even), and 

 is not a multiple of p. 

By direct substitution, it may be verified that (2.4) 

constitutes a solution of the Diophantine equation 

(2.3).  When both  and  are odd, a, b and c (in 

(2.4)) is even. Thus, for the primitive solution,    

and   must be of opposite parity. It may be 

mentioned here that Dickson (1971) gives the 

following solution of the equation (1.3): 

a = (pt2 + 1), b = (pt2 – 1), c = 2t,     (2.5) 

where  and t are any positive integers. It may be 

remarked here that, (2.5) does not constitute the 

general solution of (2.1). For example, when p = 2, 

by Lemma 2.1 with  = 3,  = 1,  (11, 7, 6) is a 

solution of (2.1), which cannot be obtained from 

(2.5) for any integral values of  and t. Vowe (1993), 

in his solution to the problem of Sastry (1992), uses a 

more general solution. It may be mentioned here that 

(2.4) does not give all the solutions of the equation 

(2.3); for example, for p (  3), it may readily be 

verified that 
 1

2

 p
a ,


  

 1

2

 p
b ,


  c = 1 is a 

primitive solution; however, Lemma 2.2 is sufficient 

for  this paper.   

A particular case of Lemma 2.2 is one when   p = 3; 

this case has been studied, to some extent, by 

Majumdar (2018, 2020). The following lemma gives 

two sets of solutions of the Diophantine  equation    

a2 = b2 + pqc2, where p and q are two distinct             

odd primes. 

Lemma 2.3: Consider the Diophantine equation 

a2 = b2 + pqc2, gcd(a, b, c) = 1,         (2.6) 

where p and q ( > p  3) are primes. Then, its two sets 

of (positive) primitive solutions are as follows: 

(1)  a = p2 + q2, b = p2 – q2, c = 2,   (2.7) 

where  and  are (positive) integers with   , 

gcd(, ) = 1,  and  are of opposite parity, and  

is not a multiple of q,  is not a multiple of p,  

(2)  a = 2 + pq2, b = 2 – pq2, c = 2,    (2.8) 

where   and   are (positive)  integers with  gcd 

(, ) = 1 and both  and  are of opposite parity, 

and  is not a multiple of p or q.  

When p = 2, both the parameters  and  are odd. 

Proof: With a, b, c given by (2.7), 

a2 = (p2 + q2)2 = (p2 – q2)2 + 4pq2 2  

= b2 + pqc2; 

also, from (2.8), 

a2 = (2 + pq2)2 = (2 – pq2)2 + 4pq2 2  

= b2 + pqc2. 

Thus, each of (2.7) and (2.8) forms a solution of 

the Diophantine equation (2.6).  

Now, replacing  by p in (2.8), one gets the 

solution  

a = p(p2 + q2), b = pp2 – q2, c = 2p, 

which is just p times the solution (2.7). 

 When p (  3) is odd, so that a, b and c are pairwise 

co-prime, the parameters  and  in part (1) of the 

lemma must be of opposite parity, while for p = 2,    

 must be odd. Again, when p is odd, the parameters 

 and  in part (2) are of opposite parity, and  is     

odd when p = 2. 

Extension of Lemma 2.3 is the following one. 
 

Lemma 2.4: Consider the Diophantine equation 

a2 = b2 + pqrc2, gcd(a, b, c) = 1,         (2.9) 

where p, q and r (r > q > p  3) are three distinct 

primes. Then, its four sets of (positive) primitive 

solutions are given below, where in each case, the 

parameters  and  are (positive) integers with   , 

gcd(, ) = 1, and  and  are of opposite parity : 

(1)  a = p2 + qr2, b = p2 – qr2, c = 2,  

where  is not a multiple of q or r,  is not      

a multiple of p,  
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(2)  a = q2 + pr2, b = q2 – pr2, c = 2, 

where  is not a multiple of  p or r,  is not 

a multiple of q, 

(3)  a = r2 + pq2, b = r2 – pq2, c = 2,                                      

where  is not a multiple of p or q,  is not a 

multiple of r,  

(4)  a = 2 + pqr2, b = 2 – pqr2, c = 2,                                      

 is not a multiple of p or q or r.  

When p = 2, the parameter  in part (1) is odd, and 

the parameter  must be odd in each of the 

remaining three cases.  

Proof: The proof follows from the following 

identities : 

(p2 + qr2)2 = (p2 – qr2)2 + 4pqr2 2; 

(q2 + pr2)2 = (q2 – pr2)2 + 4pqr2 2; 

(r2 + pq2)2 = (r2 – pq2)2 + 4pqr2 2; 

(2 + pqr2)2 = (2 – pqr2)2 + 4pqr2 2. 

The a, b and c in (2.9) are pair-wise relatively 

prime;  and  both cannot be even; moreover  

and  both cannot be odd when p (  3) is odd. 

Also, when p = 2, so that a, b and c are pairwise 

co-prime, the conditions mentioned in the lemma 

must be satisfied. 

The lemma below extends to the case involving four 

distinct primes. 
 

Lemma 2.5: Consider the Diophantine equation 

a2 = b2 + pqrsc2, gcd(a, b, c) = 1,      (2.10) 

where p, q, r and s (s > r > q > p  3) are four primes. 

Then, its eight sets of (positive) primitive solutions 

are as listed below, where in each case,  and  are 

(positive) integers with   , gcd(, ) = 1,  and  

are of opposite parity : 

(1)  a = p2 + qrs2, b = p2 – qrs2, c = 2,                                    

where  is not a multiple of q or r or s,  is 

not a multiple of p,  

(2)  a = q2 + prs2, b = q2 – prs2, c = 2,                                    

where is not a multiple of p or r or s,  is 

not a multiple of q, 

(3)  a = r2 + pqs2, b = r2 – pqs2, c = 2,                                    

where  is not a multiple of p or q or s,  is 

not a multiple of r,  

(4)  a = s2 + pqr2, b = s2 – pqr2, c = 2,                                    

where  is not a multiple of p or q or r,  is 

not a multiple of s,  

(5)  a = pq2 + rs2, b = pq2 – rs2, c = 2,                                    

where  is not a multiple of r or s,  is not a 

multiple of p or q,  

(6)  a = pr2 + qs2, b = pr2 – qs2, c = 2,                                    

where  is not a multiple of q or s,  is not a 

multiple of p or r, 

(7)  a = ps2 + qr2, b = ps2 – qr2, c = 2,                                    

where  is not a multiple of q or r,  is not a 

multiple of p or s,   

(8)  a = 2 + pqrs2, b = 2 – pqrs2, c = 2,                                    

where  is not a multiple of p or q or r or s.  

When p = 2, the parameter  in each of part (1), part 

(5), part (6), and part (7) is odd, while  is odd in 

each of the remaining cases. 

Proof: The proof follows from the following eight 

identities : 

(p2 + qrs2)2 = (p2 – qrs2)2 + 4pqrs2 2; 

(q2 + prs2)2 = (q2 – prs2)2 + 4pqrs2 2; 

(r2 + pqs2)2 = (r2 – pqs2)2 + 4pqrs2 2; 

(s2 + pqr2)2 = (s2 – pqr2)2 + 4pqrs2 2. 

(pq2 + rs2)2 = (pq2 – rs2)2 + 4pqrs2 2; 

(pr2 + qs2)2 = (pr2 – qs2)2 + 4pqrs2 2; 

(ps2 + qr2)2 = (ps2 – qr2)2 + 4pqrs2 2; 

(2 + pqrs2)2 = (2 – pqrs2)2 + 4pqrs2 2. 

Clearly, when p (  3), in order that a, b and c are 

pair-wise relatively prime, the parameters  and  

cannot be both or both even. It is evident that, when 

p = 2, the conditions in the lemma are satisfied. 

The problem 

Consider the following sequence of (2N+ 1) 

(positive) integers in arithmetic progression : 

y – Nd, y – (N – 1)d, …, y – d, y, y + d, …, y + Nd, 
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where d ( > 0) is the common difference and   y > Nd. 

Note that the latter condition guarantees that all the 

terms of the sequence are positive. 

Let SS(N) be the sum of squares of the terms of the 

sequence, that is, 

2 2 2

1

( ) ( ) ]( ) [
N

i

y id y id .SS N y


       (3.1) 

Then, SS(N) may be expressed as follows. 

Lemma 3.1: For all N  1, 

SS(N) = (2N + 1)
2 2(  1)

3
 

 .[ ]N N
dy , y Nd


    (3.2) 

Proof: From (3.1), after simplification, 

2 2 2

1

2  ( ) (2 1)
N

i

d i .SS N N y


            (i) 

Since 
2

1
6

(   1)(2   1)
 

N

i

N N N
i ,



 
  plugging in (i), the 

desired result is obtained after some simple algebraic 

manipulation. 

The problem is to find the condition such that SS(N), 

given in Lemma 3.1, is a perfect square. To simplify 

the situation, the following assumptions are made : 

Assumption 3.1: Let the integer N ( > 1) be such that 

2N + 1 is a square. 

Assumption 3.2: One of N and N + 1 is divisible by 3. 

Assumption 3.2 is meant to guarantee that 
(  1)

3
 N N 

 

is an integer. Then, the following result can be proved. 

Lemma 3.2: Let the integer N be such that 

2N + 1 = M2 for some integer M ( > 0). 

Then, N is a multiple of 4; furthermore, under 

Assumption 3.2, N is a multiple of 3. 

Proof: Since 2N = (M – 1)(M + 1), it follows that each 

of M – 1 and M + 1 is even. Now, since one of M – 1 

and M + 1 is of the form 4m and the other one is of  

form 4m + 2, it follows that N is a multiple of 4. 

Now, writing  

M2 = N + (N + 1),  

it follows that, under Assumption 3.2, M is not 

divisible by 3. Then one of M – 1 and M + 1 is 

divisible by 3. Consequently, N is divisible by 3. 

The following lemma gives the  main  result of   

this paper. 

Lemma 3.3: Let N be such that 

2N + 1 = M2 for some integer M > 0. 

Then, SS(N) is a perfect square if and only if 

2 2(  1)
3
 N N

dy


 = x2 for some integer x. 

Proof: is evident from Lemma 3.1. 

Some particular cases 

Section 3 derives the condition that SS(N), given by 

(3.2), is a perfect square under Assumption 3.1 and 

Assumption 3.2. Lemma 3.2 shows that, under these 

two assumptions, N is a multiple of 12. In this 

section, some particular cases are studied. By 

Assumption 3.1, (2N + 1) is a square. The following 

table gives such N and the related information, 

when N < 1000. 

Table 1. Values of N for which 2N + 1 is a square 

N 2N + 1 (   1)
3

N N 
 

12 52 2213 

24 72 2102 

60 112 22561 

84 132 225717 

144 172 342529 

180 192 2235181 

264 232 2351153 

312 252 2213313 

420 292 2257421 

480 312 2551337 

612 352 22317613 

684 372 223519137 

840 412 2357292 
 

In the following five examples, the cases N = 12, 24, 

60, 84, 264 are considered in detail. 

Example 4.1: When N = 12. In this case, by (3.2), 

SS(12) = 52 2 213(2 )[ ]y d . 

Assuming that SS(12) = (5x)2 for some integer 

 x ( > 0), by Lemma 2.2 with p = 13, 

y = 132 – 2, d = ,                (4.1) 
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where  and  are integers with gcd(, ) = 1, and    

y >12d = 12. It can be proved that  > , for 

otherwise, 

    y  132 – 2  122  12, 

which leads to a contradiction. 

When  = 1, the minimum admissible value of  is   

 = 2. When  = 1,  = 2 in (4.1), then     d = 2 and y = 

51. This gives the series 

272 + 292 + 312 + … + 752 = (553)2. 

Letting  = 1 and  = 3, 4 in succession, the following 

series result : 

802 + 832 + … + 1522 = (5118)2. 

1592 + 1632 + … + 2552 = (5209)2. 

Again, putting  = 2,  = 3, the following series is 

obtained : 

412 + 472 + … + 1852 = (5121)2. 

When  = 3,  = 4, one gets the series 

552 + 672 + … + 3432 = (5217)2, 

while,  = 3,  = 5 gives the series 

1362 + 1512 + … + 4962 = (5334)2. 

The above examples show that to find primitive 

solutions of the Diophantine equation (4.1), it is 

unnecessary. that  and  must be of the same parity; 

there is such a solution when  and  are both odd. 

Example 4.2: By (3.2) with N = 24, 

SS(24) = 72 2 22(10 )[ ]y d . 

Assuming that SS(24) = (7x)2 for some integer           

x ( > 0), by Lemma 2.1, 

y = 22 – 2, 5d = ,                (4.2) 

where  and  are integers with gcd(, ) = 1. In this 

case, in order that d is an integer, one of  and  

must be divisible by 5. Also, 

y  22 – 2 > 24d = 
5

24
 

i.e., 
2 2

5 50
6 97( )     

i.e., 

97
2

5

6   
2.592839 .


                                                      

Thus,  and  must satisfy the above inequality in 

this case. 

Thus, when  = 5, the only admissible value of  is  

 = 1, resulting in the series 

252 + 262 + … + 732 = (751)2. 

With  = 10, the only two admissible values of  are 

 = 1, 3, giving respectively the following series : 

1512 + 1532 + … + 2472 = (7201)2, 

472 + 532 + … + 3352 = (7209)2. 

When  = 13, the only admissible  is  = 5, giving 

the series below : 

12 + 142 + 272 + … + 6252 = (7363)2. 

Also,  = 14,  = 5 gives the series 

312 + 452 + … + 7032 = (7417)2. 

With  = 10,  = 27, the series obtained is 

622 + 1162 + … + 26542 = (71558)2, 

which reduces to 

312 + 582 + … + 13272 = (7779)2. 

It may be mentioned here that the equation  22 – 2 

= 31 has the unique solution  = 1,     = 4, which is not 

admissible by the condition of the problem. Thus, unlike 

Lemma 2.1,  is not restricted to odd values only.  

This may be recalled as the problem proposed by 

Sastry (1992). Vowe (2007) uses the solution 

y = (22 – 2), 5d = ,  

where  ( > 0) is an integer. If the above solution is 

used, then  may be taken as an integer of the form 

5m, solutions may be obtained by assigning 

admissible values to  and . 

Example 4.3: Letting N = 60 in (3.2), one gets SS(60) 

= 112 2 2305(2 )[ ]y d . 

Assuming that SS(60) = (11x)2 for some integer x ( > 

0), by Lemma 2.3 with p = 5, q = 61, one solution is 

y = 612 – 52, d = ,               (4.3) 

where  and  are integers with gcd(, ) = 1,  is not 

a multiple of 61 and  is not a multiple of 5. 

Furthermore, the following condition must be satisfied: 

y  612 – 52 > 60d = 60 

i.e., 
2 2

261 61
30 1205( )     

i.e., 
61

30  1205 1.0608706 .                                                  

When  = 1, then   2. Letting  = 1,  = 2 in (4.3), 

one has d = 2 and y = 239. This case gives the series 
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1192 + 1212 + … + 3592 = (11249)2. 

With  = 1,  = 3, the resulting series is 

3642 + 3672 + … + 7242 = (11554)2. 

Again, letting  = 2,  = 3, the series obtained is 

1692 + 1752 + … + 8892 = (11569)2. 

When  = 17,  = 19, the resulting series is 

11962 + 15192 + … + 399562 = (1123466)2. 

Note that, to get primitive solutions of the 

Diophantine  equation (4.3), the  parameters   and   

 need  not be of  opposite  parity,  contrary  to  

Lemma 2.3. 

By Lemma 2.3, the second solution is 

y = 3052 – 2, d = ,               (4.4) 

where  and  are integers with gcd(, ) = 1,  is 

not a multiple of 5 or 61. Moreover, 

y  3052 – 2 > 60d = 60 

i.e., 
2 2

2305 305
30 1205( )     

i.e., 
305

30  1205 0.202174 .                                                  

Thus, in this case,  and  satisfy the above 

inequality. 

When  = 1,  = 1 in (4.4), d = 1 and y = 304. This 

case gives the series 

2442 + 2452 + … + 3642 = (11306)2. 

When  = 2,  = 1, the resulting series is 

1812 + 1832 + … + 4212 = (11309)2, 

when  = 3,  = 1, the series obtained is 

1162 + 1192 + … + 3762 = (11314)2, 

and when  = 4,  = 1, the series obtained is 

492 + 532 + … + 5292 = (11321)2. 

When  = 2, the only admissible values of  are  = 

1, 3, 7, 9, and the corresponding series are 

10992 + 11012 + … + 13392 = (111221)2,  

8512 + 8572 + … + 15712 = (111229)2, 

3312 + 3452 + … + 20112 = (111269)2, 

592 + 772 + … + 22192 = (111301)2. 

When  = 9, the  minimum  attainable value of   is          

 = 2, and the corresponding series is 

592 + 772 + … + 22192 = (111301)2. 

Note that, unlike Lemma 2.3, the parameters  and  

may  be odd, as  demonstrated above. 

Example 4.4: (3.2) with N = 84 gives 

SS(84) = 132 2 2595(2 )[ ]y d . 

Assuming  that  SS(84)  =  (13x)2  for  some   integer     

x ( > 0), by Lemma 2.4 with p = 5, q = 7, r = 17, one 

solution is 

y = 1192 – 52, d = ,               (4.5) 

where  and  are integers with gcd(, ) = 1,  is 

not a multiple of 7 or 17, and  is not a multiple of 5. 

Also,  and  satisfy the condition below. 

y  1192 – 32 > 84 

i.e., 2 2
2119 119

235942( )     

i.e., 
119

42  2359 0.7610885 .                                                    

With  = 1,  = 1 in (4.5), one has d = 1 and    y = 114, 

so that the resulting series is 

302 + 312 + … + 1982 = (13124)2. 

Letting  = 1,  = 2 (so that d = 2, y = 471), one gets 

the series 

3032 + 3052 + … + 6392 = (13481)2. 

Again, letting  = 2,  = 3, the series obtained is 

5472 + 5532 + … + 21222 = (131091)2. 

When  = 5, the minimum possible value of   is       

 = 4, and the corresponding series is 

992 + 1192 + … + 34592 = (132029)2. 

When  = 10, the minimum admissible value of  is 

 = 8.  = 10,  = 9 gives the series 

15792 + 16692 + … + 166992 = (1310139)2. 

Note that, one may get primitive solutions of the 

Diophantine equation (4.5) even when the parameters 

 and  both are odd. 
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By Lemma 2.4, the second solution is 

y = 852 – 72, d = ,               (4.6) 

where  and  are integers with gcd(, ) = 1,  is 

not a multiple of 5 or 17,  is not a multiple of 7, and 

y  5432 – 52 > 84d = 84. Then, 

2 2
285 85

235942( )     

i.e., 
85

42  2359 1.0655239 .                                                    

When  = 1, the minimum  is  = 2, and the 

corresponding series is 

1652 + 1672 + … + 5012 = (13347)2. 

When  = 2,  = 3 (so that d = 6, y = 737), the 

resulting series is 

2332 + 2392 + … + 12412 = (13793)2. 

In this case, in order to get primitive solutions of the 

Diophantine equation (4.6), it is not necessary that 

the parameters  and  must be of opposite parity, as 

is required in Lemma 2.4. For example,  = 1,  = 3 

gives the series 

5062 + 5092 + … + 10102 = (13772)2. 

The next solution to consider is 

y = 352 – 172, d = ,              (4.7) 

where  and  are integers with gcd(, ) = 1,  is 

not a multiple of 5 or 7, and  is not a multiple of 17; 

moreover, y > 84d = 84. The latter condition may 

be put in the following form : 

2 2
235 35

235942( )     

i.e., 
35

42  2359 2.5877 .                                                    

When  = 1, the minimum  is  = 3. The 

corresponding series is 

462 + 492 + … + 5502 = (13332)2. 

When  = 2, the minimum  is  = 7, giving the 

series  

4712 + 4852 + … + 28232 = (133362)2. 

When  = 3, the minimum  is  = 8, and the 

corresponding series is 

712 + 952 + … + 41032 = (132393)2. 

while  = 3,  = 11 gives the series 

13102 + 13432 + … + 68542 = (134388)2. 

The above example shows that, to get primitive 

solutions of the Diophantine equation (4.7), it is not 

necessary that the parameters  and  must be of 

opposite parity. 

Finally, the fourth solution  

y = 5952 – 2, d = ,               (4.8) 

is considered, where  and  are integers with gcd 

(, ) = 1,  is not a multiple of 5 or 7 or 17. Now, 

y  5952 – 2 > 84 

i.e., 
2 2

2595 595
235942( )     

i.e., 
595

42 + 2359 0.1522177 .           

Thus, in this case,  and  must satisfy the above 

inequality. 

When  = 1,  = 1, the corresponding series is 

5102 + 5112 + … + 6782 = (13596)2. 

With  = 1,  = 2, the resulting series is 

22112 + 22132 + … + 25472 = (132381)2, 

and with  = 1,  = 3, the series obtained is 

51022 + 51052 + … + 56062 = (135356)2. 

When  = 2,  = 1, the series obtained is 

4232 + 4252 + … + 7592 = (13599)2. 

Note that, when  = 1, the maximum possible value 

of  is  = 6. Corresponding to  = 6,    = 1, the series is 

552 + 612 + … + 10632 = (136031)2. 

Also, note that, primitive solutions of the 

Diophantine equation (4.8) are obtained even when 

the parameters  and   are odd. 

Example 4.5: (3.2) with N = 264 gives 

SS(264) = 232 2 25830(2 )[ ]y d . 

Assuming that SS(264) = (23x)2 for some integer x ( > 

0), by Lemma 2.5 with p = 2, q = 5, r = 11, s = 53, one 

solution is 

y = 29152 – 22, d = ,             (4.9) 
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where  and  are integers with gcd(, ) = 1,  is 

not a multiple of 5 or 11 or 53, and  is not even. 

Now, the condition y  29152 – 22 > 264d = 264 

can be written as  

2 2
22915 2915

132 23254( )     

i.e., 
2915

132 23254 0.097596 .     

Thus, in this case,  and  must satisfy the condition 

above.                                              

When  = 1,  = 1 in (4.9), the series obtained is 

26492 + 26502 + … + 31772 = (232917)2, 

and when  = 2,  = 1, the series is 

23792 + 23812 + … + 34352 = (232923)2. 

Note that, when  = 1, the  maximum  attainable  is 

 = 10. The case  = 10,  = 1 is covered by the fifth 

solution considered later. 

By Lemma 2.5, the second solution is 

y = 11662 – 52, d = ,             (4.10) 

where  and  are integers with gcd(, ) = 1,  is 

not even or a multiple of 11 or 53, and  is not a 

multiple of 5. Now, 

y  11662 – 52 > 264   

i.e., 
2 2

21166 1166
132 23254( )     

i.e., 
1166

132 23254 0.24399 ,                                                  

which is the condition that must be satisfied. 

When  = 1,  = 1 in (4.10), the series is  

8972 + 8982 + … + 14252 = (231171)2. 

When  = 3,  = 1, the corresponding series is 

3292 + 3322 + … + 19132 = (231211)2. 

Note that, when  = 4, the minimum admissible  is 

 = 1. 

The third solution is 

y = 5302 – 112, d = ,             (4.11) 

where  and  are integers with gcd(, ) = 1,  is 

not even or a multiple of 11, and  is not a multiple 

of 11. Now, the condition y  5302 – 112 > 264 

may be simplified as follows :  

2 2
2530 530

132 23254( )     

i.e., 
530

132 23254 0.5367785 .       

Thus, in this case,  and  must satisfy the above 

condition. 

When  = 1,  = 1 in (4.11), the series is  

2552 + 2562 + … + 7832 = (23541)2, 

and when  = 1,  = 2, the series obtained is 

15812 + 15832 + … + 26372 = (232131)2. 

The solution to consider next is  

y = 1102 – 532, d = ,                                (4.12) 

where  and  are integers with gcd(, ) = 1,  is 

not even or a multiple of 5 or 11, and  is not a 

multiple of 53. Now,  and  satisfy the condition 

y  1102 – 532 > 264   

i.e., 
2 2

2110 110
132 23254( )     

i.e., 
110

132 23254 2.5862965 .                                                  

When  = 1, the minimum attainable  is  = 3, 

giving the series 

1452 + 1482 + … + 17292 = (231043)2. 

When  = 3, the minimum admissible  is  = 8, and 

the corresponding series is 

2272 + 2512 + … + 128992 = (237517)2. 

Now, the fifth solution 

y = 5832 – 102, d = ,                               (4.13) 

is considered, where  and  are integers with gcd(, 

) = 1,  is not a multiple of 11 or 53, and  is not 

even or a multiple of 5. Now, the condition y  5832 

– 102 > 264 can be written as  

2 2
2583 583

132 23254( )     

i.e., 
583

132 23254 0.48798 .      

When  = 1,  = 1 in (4.3), the series is 

3092 + 3102 + … + 8372 = (23593)2, 

when  = 2,  = 1, the resulting series is 

152 + 172 + … + 10712 = (23623)2. 

Considering the solution 

y = 2652 – 222, d = ,            (4.14) 
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y  2652 – 222 > 264  

i.e., 
2 2

2265 265
132 23254( )     

i.e., 
265

132 23254 1.073557 .                                                  

When  = 1, the minimum admissible value of  is  

= 3, and the corresponding series is 

15712 + 15742 + … + 31552 = (232407)2. 

When  = 2, the minimum admissible  is  = 3, and 

the corresponding series is 

7132 + 7192 + … + 38812 = (232473)2. 

Next, the seventh solution 

y = 1062 – 552, d = ,            (4.15) 

is considered, where  and  are integers with gcd(, 

) = 1,  is not even or a multiple of 53, and  is not 

multiple of 5 or 11. Now, the condition y  1062 – 

552 > 264 can be written as  

2 2
2106 106

132 23254( )     

i.e., 
106

132 23254 2.6838926 .                                                  

When  = 1, the minimum possible  is  = 3, giving 

the series  

1072 + 1102 + … + 16912 = (231009)2. 

Finally, the solution to consider is 

y = 58302 – 2, d = ,             (4.16) 

where  and  are integers with gcd(, ) = 1,  is 

not even or a multiple of 5 or 11 or 53. Here,  

y  58302 – 2 > 264 

i.e., 
2 2

25830 5830
132 23254( )     

i.e., 
5830

132 23254 0.048798 .                                                 

Thus, in this case,  and  must satisfy the inequality 

above. 

When  = 1,  = 1 in (4.16), the series is 

55652 + 55662 + … + 60932 = (235831)2, 

and when  = 1,  = 2, the series is 

227912 + 227932 + … + 238472 = (2323321)2. 

Some remarks 

This papers finds a set of necessary conditions. The 

sum of squares of (2N + 1) positive integers in the 

arithmetic progression is a perfect square under two 

simple and plausible assumptions. It is shown that 

the problem gives rise to a Diophantine equation. 

The problem is then illustrated with five examples. 

These examples show that, for any N fixed, there is, 

in fact, an infinite number of solutions. There is an 

infinite number of instances such that the sum of 

squares of length (2N + 1) is a perfect square. In this 

connection, the following result holds true. 

Lemma 5.1: Two solutions of the equati 2N + 1 = M2 

are as follows : 

(1) N = 6a(3a – 1) for any integer a  1, 

(2) N = 6b(3b + 1) for any integer b  1. 

Proof: By Lemma 3.2, any integer N satisfying the 

given equation must  form N = 12n, for some integer 

n. Then, the equation takes the form 

24n = (M – 1)(M + 1).                                        (5.1) 

Now, one of the following two cases may result : 

Case 1: M – 1 = 4m for some integer m  1. 

In this case, from (5.1), 

3n = m (2m + 1).                                                (5.2) 

Then, there are two possibilities; namely, one of the 

two factors on the r.h.s. is divisible by 3. First, let 2m 

+ 1 = 3a for some integer a  1. Substituting in (5.2), 

one gets 

n = a 2
3   1( )a ,  

 so that  

N = 6a (3a – 1).                     (5.3) 

Next, let m = 3x for some integer x  1. Then, (5.2) 

gives n = x(6x + 1), so that N = 12x(6x + 1). 

Case 2: M – 1 = 4m – 2 for some integer m  1. 

Here, from (5.1), 

3n = m (2m – 1).                   (5.4) 

Then, one of the two factors on the r.h.s. is divisible 

by 3. Letting  2m – 1 = 3b  for  some  integer  b  1, 

(5.2) gives 

n = b 2
3   1( )b ,  

so that  

N = 6b (3b + 1).                     (5.5) 
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Next, letting m = 3y (y  1 being an integer) in the 

equation (5.4), one gets n = y(6y – 1), so that N = 

12y(6y – 1), which is a particular case of (5.3). 

A related problem was proposed by Alfred (1964), 

which was later revived by Laub (1990). The problem 

is to find the conditions such that the sum of squares 

of consecutive integers is a perfect square. The 

problem has been treated by Beeckmans (1994) and 

Hirschhorn (2011). In this paper, formulation of the 

problem treated the above problem corresponds to the 

particular  case  when  d = 1  (corresponding   to  = 1,  

 = 1). In Example 4.1, letting  = 1,  = 1, the 

following series in arithmetic progression is obtained : 

12 + 22 + … + 242 = (514)2.           (5.6) 

This result is interesting. Examples 4.1 – 4.5 together 

prove that the sum of squares of the first (2N + 1) natural 

numbers is not a perfect square when N = 12, 24, 60, 84, 

264. Example 4.2 reveals the interesting result that 

252 + 262 + … + 732 = (751)2. 

Thus, the sum of squares of the first 24 natural numbers 

is a perfect square, and the sum of squares of the next 

49 natural numbers is also a perfect square. 

It may be proved that, for any integer N ( > 0), there 

is a series of sum of squares of (2N + 1) consecutive 

natural numbers (satisfying both Assumption 3.1 and 

Assumption 3.2), which is a perfect square. The 

proof is as follows : Letting N = 12n, SS(N), given by 

(3.2), may be cast as follows : 

SS(12n)  

= (24n + 1) 2 2(12 1)(2 )  12[ ]n n dy , y nd,      (5.7) 

where 

y = n(12n + 1)2 – 2, d = .                            (5.8) 

It now remains to show that, y > 12nd   when    = 1, 

 = 1, that is, 

n(12n + 1) – 1 > 12n,  

that is, 

f(n)  12n2 – 11n – 1 > 0. 

Since f(n) is strictly increasing in n, it follows that 

f(n) > f(1) = 0 for all n  2. The series in (5.6) proves 

the case when n = 1. 

Another problem of interest, initiated by Alfred 

(1967), is the problem of finding conditions such 

that the sum of squares of consecutive odd integers is 

a perfect square. Note that, this problem corresponds 

to d = 2 with y – Nd being odd. It can be shown that, 

for any integer N ( > 1) (satisfying Assumption 3.1 

and Assumption 3.2), there always exists a sequence 

of consecutive odd natural numbers whose sum of 

squares is a perfect square. This can be done as 

follows : If n is odd, choose    = 1,  = 2 in (5.8), 

otherwise, choose  = 2,   = 1.   
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