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 A method for the automatic determination of the fetus health status using 

Cardiotocography (CTG) and computer-based machine learning algorithms 

was developed. Five computation friendly machine learning algorithms were 

used to create multiclass classification models to predict the fetus health 

status from secondary CTG dataset containing normal, suspected and 

pathologic data available at University California Irvine Machine Learning 

Repository. Furthermore, a comparative analysis among the built models 

was executed. According to the comparative analysis, the best model to 

automatically detect fetal health was the extreme gradient boosting 

algorithm-based model with an accuracy of 96.7% and an F1-Score of 

0.963 in the pathologic class. This finding thus has the potential to diagnose 

fetal heart conditions unsupervised, and more efficiently and effectively.  
 

Introduction 
 

In 2019, approximately 2.0 million incidents of 

stillbirth took place worldwide and about 65% of the 

cases belonged to families of low and lower-middle 

income (Hug et al., 2020). Stillbirths have an 

enormous impact on mothers, families, health care 

professionals, and the community (Heazell et al., 

2016). Previous studies have quantified the direct 

(Mistry et al., 2013) and indirect (Heazell et al., 

2016) financial costs for parents after an experience 

of stillbirth. However, the psychological and social 

costs associated with stillbirth have been described as 

unquantifiable (Tarricone, 2006). Based on the health 

burden associated with stillbirth, sustainable 

development goal (SDG) 3.2 has focused on ending 

preventable stillbirths by 2030 (Frøen et al., 2016).  

Unfortunately, the stillbirth rate is higher in rural 

areas than in urban areas (Abir et al., 2017; Fauveau 

et al., 1990). Ironically the medical facilities and 

doctors are less in rural areas (Abir   et al., 2017). 

Hence, the knowledge of the health status of the fetus 

can help the doctors make effective decisions in 

emergency conditions. For example, if a fetus is 

pathologic by a diagnostic device, the doctors can 

focus their attention on that patient and decide to 

start a surgical procedure. Against this backdrop, 

Cardiotocography (CTG) can be an effective tool to 

assess fetal health. CTG is the visual representation 

of fetal heart rate (FHR) and uterine contractions. 

FHR is an important indicator of fetal status. The 

fetal neurologic system controls the fetal heart 

through afferent and efferent networks. As the fetal 

neurologic system controls FHR, it direct indicates 

fetal well-being (Pettker and Campbell, 2018). CTG 

signal is used for fetal health status detection by 

carefully examining certain signal features. The 

normal baseline frequency for a healthy fetus is 110-

160 beats/minute, whereas a baseline less than 110 

beats/minute for 10 minutes will be considered 

Bradycardia. On the other hand, a baseline greater 

than 160 beats/minute for 10 minutes will be 

considered Tachycardia. Variability from baseline heart 

rate 6-25 beats/minute is considered normal. The 

presence of acceleration is a must in normal fetus, 

whereas deceleration is non – reassuring. 

*Corresponding author: <arefin.bmpt@du.ac.bd> 

1Institute of Education and Research (IER), University of Dhaka, Dhaka, Bangladesh 

 

J. Bangladesh Acad. Sci. 45(2); 155-167: December 2021                    DOI: 10.3329/jbas.v45i2.57206 
 

Journal of Bangladesh Academy of Sciences 
 

Journal homepage: http://www.bas.org.bd/publications/jbas.html 

http://www.bas.org.bd/publications/jbas.html


   
Rayhan et al./J. Bangladesh Acad. Sci. 45(2); 155-167: December 2021 

 

156 

 

Fig. 1.  Normal cardiotocography signal with early decelerations (CTG Case 19, 2012). 

 

Fig. 2. Pathologic signal with repetitive late decelerations (CTG Case 20, 2012). 
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While deceleration is non-reassuring, the presence of 

early decelerations concerning uterus contraction is 

not a sign of pathology. The signal in Fig. 1 has 
early decelerations and a normal baseline heart rate. 

Although this signal does not indicate pathology, the 

physician decided to perform forceps delivery 

resulting in an unnecessary intervention (CTG Case 

19, 2012).  But in the case of Fig. 2, there is a 

presence of late repetitive decelerations and 

increasing the baseline heart rate, which is a clear 

sign of pathology. The physician decided to perform 

a caesarean section which was a necessary 

intervention (CTG Case 20, 2012). Thus, CTG signal 

interpretation is a complex process involving 

examining several different signal features. Manually 

performing this task is hard, time-consuming, and 

error-prone. Misinterpreting the signal can lead to 

fetal death or unnecessary intervention. Hence, 

automating the process of CTG signal interpretation 

will benefit better decision-making.  

In this context, to obtain the SDG of ending 

preventable stillbirths by 2030 for Bangladesh, 

proper use of technology can be of great help. The 

study aimed to combine the power of biomedical 

instruments such as Cardiotocography or fetal heart 

monitor and the inferential ability of computer-based 

machine learning algorithms to determine the health 

status of the fetus automatically. Overall, the 

potential goals that can be attained using the results 

of this study are:  

1. Automatic fetal health prediction from raw   

CTG data. 
 

2. Effective and efficient decision making by the 

doctors in times of pregnancy emergency. For 

example, situations like labor or complicacies 

related to pregnancy and ruling out most healthy 

cases as healthy and facilitating the doctor to 

focus on the really risky patients. 

Materials and Methods 

This study explored the optimal machine learning 

models that can accurately detect the suspected and 

pathologic fetus from a normal fetus. Secondary 

CTG data were collected from the University of 

California Irvine (UCI) machine learning repository 

(Dua & Graff, 2017). Collected data were processed 

for outlier removal, and following that feature 

engineering algorithm was applied. After that, 

multiple machines learning algorithm-based model 

development and evaluation processes were 

performed. The details are discussed step by step in 

the following subsections. 

Experimental Paradigm 

Each row of the dataset represents one instance of 

CTG recording. Features of these recordings, 

which are useful in predicting the fetus’s health, 

are listed in each row. Each row of this dataset is 

labeled with three classes – Normal, Suspected, 

and Pathologic. The experimental protocol 

contained two key stages: the data preprocessing 

and the machine learning model development 

stages. The data preprocessing stage is shown in 

the top four boxes in Figure 3. There are three key 

steps in this data preprocessing stage: i) removing 

unnecessary data columns such as patient names, 

ii) removing outlier data to obtain a clean dataset, 

and iii) selecting important features using feature 

selection algorithms. 

After preprocessing the dataset, the machine 

learning algorithm-based models were built. The 

parallel dark 5 boxes in the middle of Fig. 3 

describe the models considered for this 

classification problem. Logistic Regression, 

Random Forest Classifier, Support Vector Machine, 

K-Nearest Neighbor, and Extreme Gradient 

Boosting were the five different machine learning 

algorithms applied in this study. 
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Fig. 3. Flowchart for building predictive models for the task of predicting fetus heart’s state 

from Cardiotocography dataset (Top four boxes – dataset preprocessing steps, middle five 

parallel dark boxes – different machine learning algorithms applicable to this dataset, bottom 

six boxes- steps to develop machine learning models). 
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They were chosen to avoid unnecessary 

computational complexity on a small, symmetrically 

distributed tabular dataset and consider the 

implementation capacity and interfacing suitability in 

the context of Bangladesh. The bottom six boxes 

represent the model building and model validation 

stage. These steps are similar for five different 

algorithms, and they are: 

1. Train test split: Dividing the dataset into two  

sets–Training and Test sets. 

2. Learning curve: Plotting learning curve to 

determine if enough data is available for training. 

3. Hyperparameter tuning: Plotting validation  

curve to determine the optimal value of 

hyperparameter for a chosen algorithm. 

4. Model Training: Training the model using the 

training dataset and derived hyperparameters for 

a chosen algorithm. 

5. Confusion matrix and performance metrics: This 

is the first step in model validation to plot the 

confusion matrix and determine performance 

metrics such as accuracy, sensitivity, precision, 

F1 - score. These performance metrics show how 

accurately one model classifies each class. 

6. Receiver operating characteristic (ROC) curve 

and area under the curve (AUC) value: This is 

the second step in model validation. Plotting the 

ROC curve gives us a visualization of how well 

a model performs on a given class. AUC value  

is a numeric measure of models’ performances     

in a particular class, and the closer it is to 1,     

the better. 

CTG Dataset  

The CTG dataset was obtained from the UCI 

machine learning repository (Dua & Graff, 2017). 

The CTG dataset used in this study contains the 

data of 2126 fetal cardiotocograms. This CTG 

data were automatically processed, and the 

respective diagnostic features were measured. 

Three expert obstetricians also classified the 

CTGS, and a consensus classification label was 

assigned to each of them (Ayres-de-campos  et al., 

2000). The classification was concerning a morphologic 

pattern (A, B, C, ...) and a fetal state: Normal, 

Suspected, and Pathologic in Table 1 (Ayres-de-campos 

et al., 2000). This is a highly skewed dataset where 

most data points are from the normal class. 

Table 1. Number of data points in different classes     

of the CTG dataset. 

Fetal state 
Number of data 

points (support) 

Normal 1655 

Suspected 295 

Pathologic 176 
 

A list of the features extracted in the CTG dataset 

(Ayres-de-campos et al., 2000) are as follows: 

1. LB-Fetal Heart Rate baseline (beats per minute). 

2. AC - number of accelerations per second. 

3. FM - number of fetal movements per second. 

4. UC - number of uterine contractions per second. 

5. DL - number of light decelerations per second. 

6. DS - number of severe decelerations per second. 

7. DP - number of prolonged decelerations per 

second. 

8. ASTV - the percentage of time with abnormal 

short-term variability. 

9. MSTV - mean value of short-term variability. 

10. ALTV - the percentage of time with abnormal 

long-term variability. 

11. MLTV - mean value of long-term variability. 

12. Width - width of FHR histogram. 

13. Min - minimum of FHR histogram. 

14. Max - maximum of FHR histogram. 

15. Nmax - number of histogram peaks. 

16. Nzeros - number of histogram zeros. 

17. Mode - histogram mode. 
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18. Mean - histogram mean. 

19. Median - histogram median. 

20. Variance - histogram variance. 

21. Tendency - histogram tendency. 

22. CLASS - FHR pattern class code (1 to 10). 

23. NSP - fetal state class code (N=normal; 

S=suspect; P=pathologic). 

Outlier Removal 

Outlier removal was done in our work on the three 

classes separately instead of removing them from 

the whole dataset at once using the Isolation Forest 

Algorithm (Liu et al., 2008). This was done to 

prevent detecting the pathologic data points as 

outliers. A number of estimators used by this 

Isolation Forest algorithm was set as 20.  

Feature Engineering 

This study used Minimum Redundancy Maximum 

Relevance (MrMr) model to select the important 

features. This algorithm selects good features according 

to the maximal statistical dependency criterion based on 

mutual information (Peng et al., 2005). MrMr was 

applied to the CTG dataset to find the 10 most important 

features to predict the fetus’s health status. The selected 

features were - ALTV, MSTV, ASTV, MLTV, 

Tendency left asymmetric, Tendency right asymmetric, 

Mean, Variance, Mode, and Min. 

Machine Learning Algorithms 

Logistic Regression (LR) 

To verify the applicability of LR algorithm (Walker & 

Duncan, 1967), a learning curve was drawn, which 

is shown in Figure 4. As we can see, as the number 

of training sets increases, the validation score 

improves, which indicates that LR is a suitable 

algorithm for this problem. The optimum values 

for the hyperparameters were derived by drawing 

validation curves. The optimum number of 

iterations for LR was found to be 50 and the 

optimum value for the regularization constant was 0.8. 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4. The learning curve for logistic regression 

The main bottleneck in training the model for better 

performance was the skewness of the dataset. From 

Table 1, we can see that the frequency of suspected 

and pathologic classes is much less than the normal 

class. If each class has equal regularization constant 

while training, the pathologic and suspected class 

sensitivity becomes very poor. But the goal of this 

study is to improve the sensitivity of pathologic and 

suspected classes even if we have to trade off the 

precision of normal class. That way, we may have 

more false positives in the normal class, but in return, 

we will reduce the number of false negatives in the 

pathologic and suspected class. To achieve that, 

balanced class weight for three classes should be 

used while training the model.  When using balanced 

class weights, the classes with lower frequency will 

have higher class weight and thus, they will give a 

higher penalty for misclassification. The formula 

used for balanced class weight is: 

Class weight for class n =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠_𝑛
 

The parameters used while training the models were: 

maximum iterations = 50 (found by hyperparameter 

tuning), regularization constant = 0.8 (found by 

hyperparameter tuning), and chosen class weight so that 

each class has a balanced weight. 



   
Rayhan et al./J. Bangladesh Acad. Sci. 45(2); 155-167: December 2021 

 

161 

 

Random Forest (RF) 

Plotting the learning curve for the RF algorithm showed 

that the algorithm yields a better validation score with 

more data (Ho, 1995). Validation curves were drawn 

for hyper parameter tuning. The chosen parameters for 

training random forest models were: maximum depth 

of trees = 10 (found by hyperparameter tuning), number 

of estimators = 500, and chosen class weight so that each 

class has a balanced weight. 

Support Vector Machine (SVM) 

Again plotting the learning curve for the SVM 

showed that the algorithm yields better validation 

scores with more data (Cortes & Vapnik, 1995). 

Validation curves were drawn for hyperparameter 

tuning. The chosen parameters for training SVM 

models were: maximum iterations = infinity (found 

by hyperparameter tuning), regularization constant    

= 0.1 (found by hyperparameter tuning), chosen class 

weight was so that each class has balanced weight, 

and kernel was set to linear (insight gained from the 

learning curve). 

Extreme Gradient Boosting (XGB) 

XGB differs from the RF by the method of training 

the trees. Each iteration of XGB greedily adds a new 

tree that improves the ensemble’s performance, 

minimizing this objective function (Chen & Guestrin, 

2016; Friedman, 2001). The optimum learning rate of 

XGB was found to be 0.1 by trial and error. The 

number of estimators was initially set to a very high 

value at 20000. Then Early Stopping Technique was 

used to detect the optimum number of estimators as 

the XGB models learn from the dataset. This method 

continuously checks an error metric of the validation 

set after adding each estimator to the ensemble. If the 

validation error keeps increasing for a certain number 

of consecutive iterations of the algorithm, the 

algorithm stops training and keeps only the 

estimators that reduce the error. The number of 

estimators to check until the training is stopped 

was set to 20 as it yielded reasonable accuracy. 

Hence, the chosen hyperparameters were: learning 

rate = 0.1, early stopping rounds = 20, and error metric 

for early stopping method = Multiclass log loss. 

K-Nearest Neighbors (KNN) 

KNN algorithm can be used for supervised learning 

classification problems. This study used a machine 

learning library called ‘scikit-learn’ to apply KNN to 

the dataset (Pedregosa et al., 2011).  

The optimum number of nearest neighbors based 

on which a data point will be predicted was set as 

5 by trial and error. Also, the algorithm was set to 

take a weighted approach. The closer neighbors 

will have more influence on a query point than the 

distant points. So, the following hyperparameters 

were decided: several nearest points to be 

considered = 5, and nature of weights = Distance 

(closer neighbors of a query point will have a 

greater influence than neighbors further away). 

Model Evaluation 

Several performance metrics like accuracy, 

precision, sensitivity/recall, and F1-score/F-

measure were used in this study to validate the 

machine learning models developed. These metrics 

are defined based on True Positives (TP), False 

Positives (FP), True Negatives (TN), and False 

Negatives (FN). 

Results 

Ten models were constructed for comparison. 

Among them, five models were built using each of 

the five machine learning algorithms, which had 

all the dataset features as a descriptive variable. 

The remaining five models were built using each 

of the five machine learning algorithms again but 

using the features selected by the MrMr algorithm. 

All of these models were built upon preprocessed 

dataset, and tuned hyperparameters. Five machine 

learning algorithms, namely LR, RF, SVM, XGB 

and KNN, were used to build these models. 

Performance metrics of these ten models are 

presented in Fig. 5. 
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 Table 2. Performance metrics for Normal, Suspected and Pathologic classes. 

CTG data 

Classes 

Performance 

Metrics 

Models with selected features Models with all features 

LR SVM RF KNN XGB LR SVM RF KNN XGB 

Normal Class Precision .976 .992 .983 .951 .960 .980 .984 .980 .960 .983 

Sensitivity .802 .832 .970 .970 .964 .789 .822 .970 .970 .983 

F1-score .880 .905 .977 .960 .962 .874 .896 .975 .965 .983 

Suspected 

class 

Precision .407 .480 .766 .732 .724 .391 .427 .760 .725 .837 

Sensitivity .767 .837 .878 .732 .724 .791 .814 .884 .707 .878 

F1-score .532 .610 .818 .732 .724 .523 .560 .817 .716 .857 

Pathologic 

class 

Precision .660 .630 1.00 .955 1.00 .673 .729 1.00 .885 1.00 

Sensitivity .946 .919 .929 .740 .957 .946 .946 .892 .821 .929 

F1-score .778 .747 .963 .840 .978 .787 .824 .943 .852 .963 

 

 

Machine Learning Algorithms 

 Fig. 5. Comparison of machine learning model accuracies based on features 
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According to Figure 5, the XGB model with all 

features has the highest accuracy of 0.967, and the 

RF model is second with 0.956 with selected 

features. Furthermore, the models examined in this 

study were multiclass classification models with 

three classes. Hence, precision, sensitivity, and F1-

score were calculated for each class in all models. 

Table 2 displays the normal, suspected and 

pathologic class performance metrics. 

From Table 2, the XGB model with all features 

performed very well with an F1-score of 0.983 in a 

normal class, 0.857 in suspected class, and 0.963 in 

pathologic class. RF model with selected features 

also performed exceptionally well with an F1-score 

of 0.977 in a normal class, 0.818 in suspected class, 

and 0.963 in pathologic class. However, we can see 

that all algorithms performed rather poorly for the 

suspected class. The suspected class contained data 

very similar to both normal and pathologic classes. 

Despite this drawback, we saw satisfactory 

performances from the XGB model with all features 

with an F1-score of 0.857.RF using only the selected 

features also had a similar F1-score of 0.818. Since 

reducing false positives in pathologic class and 

reducing false negatives in normal class is of 

paramount importance, we ruled out the poorly 

performing models developed with KNN, SVM and 

LR were not suitable for this work.  

According to these findings, one can note that the 

XGB model with all features has the highest 

accuracy score of 96.7%, and the highest F1 scores 

for all three classes. Hence, the XGB model with all 

features is the best for classifying this CTG dataset. 

XGB with all features performed the best in all 

evaluation metrics as it combines the power of 

ensemble learning with gradient boosting, while RF 

only uses the concept of ensemble classifier.  

Figure 6 shows the confusion matrix for the XGB 

model where XGB with all features has 0 false 

positives and only 2 false negatives in the pathologic 

class, while the support was 28. Only 5 false negatives 

were in the normal class while the support was 300. 

 

 

  

 

 

 

 

 

 

Fig. 6. Confusion matrix for XGB model with all 

features. Here, the labels N, S, and P represent 

normal, suspected, and pathologic classes. 

RF model with selected features performed notably 

close enough to the best performing model with an 

accuracy score of 95.6%. The F1 scores in all three 

classes were similar to the best performing model. It is 

worth mentioning that the RF model with selected 

features used only 10 features instead of 23.  

 

 

 

 

 

 

 

 

Fig. 7. Confusion matrix for RF model with selected 

features. Here, the labels N, S, and P represent 

normal, suspected, and pathologic classes. 

Figure 7 shows the confusion matrix for this model. 

There were 9 false negatives in the Normal class  
with the support of 300. In the pathologic class,    
2 false negatives were misclassified as suspected  
and no false positives. 
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ROC curves are drawn following one vs. all 

strategy. For instance, while drawing ROC curve 

for the normal class, the data labeled as usual are 

considered to be a positive class. In contrast, the 

other two classes (suspected and pathologic) 

combined are considered the negative class. ROC 

curves for the XGB model with all features and RF 

with selected features are given in Figure 8 and 

Figure 9 respectively. Figure 8 shows the ROC 

curves for the three classes while predicting with 

the XGB model with all features. From Figure 8, 

the AUC value for the normal class was calculated 

as 0.9878, which is satisfactory because it is close 

to 1. Furthermore, the AUC value for the 

suspected class was 0.9788, which is the worst 

among the three classes but still close to 1, i.e.,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XGB with all features gives satisfactory 

performance even in the suspected class. Finally, 

the XGB model had an almost perfect ROC curve 

for pathologic class with an AUC value of 0.9996, 

which is highly desirable as performance in the 

pathologic class is highly important. 

If a pathologic fetus is misclassified as normal, there is 

a high risk of fetal death. On the other hand, if a normal 

fetus is classified as pathologic, there might be 

unnecessary medical intervention on a healthy fetus. 

Similarly, Figure 9 shows the ROC curve for the three 

classes while predicting the RF model with selected 

features. The AUC values for this model in normal, 

suspected, and pathologic classes are 0.9906, 0.9822, 

and 0.9991, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. ROC curves for XGB with all features model for normal, suspected and pathologic class. 
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Discussion 

Automating the fetal health status detection process by 

analyzing CTG data is critical for preventing fetal and 

neonatal death. Automatic detection can lead to a 

correct decision taken by the physician in less amount 

of time. Also, it can reduce the pressure on doctors as 

multiple patients can be monitored by the system 

under the supervision of a single doctor. The doctors 

will be able to pay attention only to the critical 

patients. This study found two effective algorithms, 

XGB and RF, to perform this automation with 96.7% 

and 95.6% accuracy, respectively. Besides, other 

parameters such as F1-score, precision, recall, ROC 

and AUC were also taken into account. This was done 

because the dataset was highly skewed where the 

number of data points for Normal, Suspected, and 

Pathologic class is 1655, 295, and 176, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since support for pathologic class is very low 

compared to normal class, special techniques such as 

balanced class weight were applied to get better 

metrics. The XGB model correctly classified 26 out 

of 28 data points despite the skewness of the dataset. 

This balanced performance across all classes is more 

important in this case rather than a high accuracy 

model that performs well only in the normal class.        

Several studies  have been conducted on classifying 

the CTG dataset from UCI (Ayres-de-campos et al., 

2000; Dua and Graff, 2017). A recent study using a 

bootstrap aggregating ensemble of random forest 

classifiers achieved 99.02% accuracy in the binary 

classification of the dataset into normal and abnormal 

data (Subasi et al., 2020). In contrast, this study 

retained the suspected class in the dataset, solving a 

multiclass classification problem. This study also 

Fig. 9. ROC curves for RF with selected features model for normal, suspected and pathologic class. 
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used ensemble models. The best performing model in 

this study was the XGB classifier which achieved 

96.70% overall accuracy for the three-class 

classification problem dividing the dataset into 

normal, suspected and pathologic classes. A similar 

study by Huang and Hsu achieved a maximum of 

97.78% accuracy using artificial neural networks on 

all three classes (Huang and Hsu, 2012). Huang and 

Hsu also applied discriminant analysis and decision 

tree, which yielded 82.10% and 86.36% overall 

accuracy, respectively.  Although the current work 

has a lower maximum accuracy than the study of 

Huang and Hsu, the performances of developed 

models using XGB and RF algorithms were 

comparable to neural networks. Additionally, XGB 

and RF algorithms have better model explainability 

and as better computational efficiency than artificial 

neural networks. 

Sensitivity in the pathologic class is an important metric 

in this classification problem. Low sensitivity in the 

pathologic class means more pathologic fetuses will be 

classified as a normal fetuses and will not receive the 

desired medical attention. Yet, sensitivity in the 

pathologic class is hard to achieve in this dataset 

because of fewer data samples for pathologic fetuses. 

Due to special measures taken in this study, sensitivity 

was as high as 97.80% achieved in the pathologic class,  

which is a considerable improvement over 94.10% 

found in another study by Sahin and Subasi on the same 

CTG dataset (Sahin and Subasi, 2015). High sensitivity 

in pathologic class implies that the pathologic fetus will 

be identified and thus help the doctors make life-saving 

decisions for the mother and fetus.  

In summary, this study used computation friendly 

machine learning algorithms to determine the 

optimal outcomes by using data preprocessing 

techniques, such as outlier detection, feature 

selection, and hyperparameter tuning, etc., while 

training the models. The use of balanced class 

weights on all the models also improved the     

overall performance rather than improving the              

overall accuracy only. 

Conclusion 

This study was motivated by the sustainable 

development goal of attaining zero stillbirth rate, 

which is expected to be gained by 2030 in 

Bangladesh. Currently, we have biomedical 

instrumentation such as Cardiotocographs to monitor 

the fetal heart rate patterns. This tool is used to 

prevent stillbirths before and during the labor period 

of pregnancy. The goal here was to enhance the 

diagnostic capability of medical practitioners by 

automating the process of CTG signal interpretation. 

Five machine learning algorithms were used to build 

automatic prediction models. Extreme Gradient 

Boosting with all features and Random Forest with 

selected features produced useful models among those 

five algorithms. XGB with all features model had an 

accuracy of 96.7% and an F1 score of 0.963. Whereas 

RF with selected features model had an accuracy of 

95.6% and an F1 score of 0.963. The F1 scores in the 

pathologic class for both models were 0.963, which 

was very close to 1, i.e., very high and realistic. 

Hence, we can conclude that incorporating the power 

of machine learning with Cardiotocography can lead 

to a more efficient and effective diagnosis of fetal 

heart conditions. In contrast to other similar studies, 

the performances of this study’s predictive models 

were improved in terms of balanced performances in 

all three classes. Furthermore, the computational 

complexity of the machine learning models used in 

this study was much lower than neural networks, 

implying that these models can be run on embedded 

devices with low memory and processing power. 

These findings in this study thus have the potentials 

to be incorporated with the commercially available 

Cardiotocographs to interpret the outcomes better 

and thus help the doctors make better and quick 

decisions without continuous supervision. Last but 

not least, further work can be done to improve the 

performance of these models. Primary data can be 

collected from hospitals in Bangladesh and the 

models can be trained using the extended dataset, 

which is the next logical step of this study.  
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