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 Based on the modified harmonic balance method, an analytical 

method has been developed for handling the forced Van der Pol 

vibration equation. Usually, a system of nonlinear algebraic 

equations arises within the unfamiliar coefficients in several 

harmonics terms and the frequency of the forcing term. A 

numerical technique has been applied to handle those nonlinear 

algebraic equations in the classical harmonic balance method. In 

our study, a system of linear algebraic equations is calculated with 

the aid of a single nonlinear one. The solutions attained by the 

suggested scheme have been likened to the results acquired by the 

well-known Runge-Kutta method, and these results display very 

nice harmony with the result obtained by the mentioned method. 

Also, it is noticed that the proposed technique is straightforward 

and gives the desired results in the whole solution domain. 
 

Introduction 
 

Van der Pol equation is known as the self-excited 

system with negative damping, and this equation is 

important to scientists, physicists, and engineers. It is 

noticed that a self-excited oscillator is a system that 

has some external energy sources. Nowadays, many 

researchers are interested in handling the forced Van 

der Pol equation owing to its various applications in 

science, technologies, and human activities. Hence 

nonlinear operations are one of the most critical 

challenges to researchers and scientists. But it is too 

difficult to control the nonlinear systems since their 

properties change rapidly due to some little variation 

of the system parameters and time. The standard 

theories and solution procedures for linear 

differential equations are widely developed. There 

are no general theories and solution techniques for 

handling the nonlinear differential equations. But 

most of the physical, engineering and real-life 

oscillatory systems have occurred in terms of 

nonlinear differential equations. To handle these 

oscillatory systems, physicists and engineers use 

linear approximation techniques. But such 

linearization is not always possible. In such cases, the 

original nonlinear oscillatory systems must be solved 

straightway. Several researchers have developed 

analytical techniques to handle nonlinear oscillatory 

systems using various methods (Belendez et al., 2012; 

Kovacic and Mickens, 1986; Krylov and Bogoliubov, 

1947; Mondal et al., 2019; Nayfeh, 1981; Liu, 2005; 

Lim and Lai, 2006; Guo and Leung, 2010; Guo and 

Ma, 2014; He, 1998, 1999, 2006; Uddin al et., 2011, 

2012, 2015; Mishara et al., 2016; Khan, 2019; Yeasmin 

et al., 2020; Uddin and Sattar, 2010; Ullah et al., 2021). 

Perturbation techniques (Kovacic and Mickens, 1986; 

Krylov and Bogoliubov, 1947; Nayfeh, 1981; Uddin 

and Sattar, 2010), which are extensively applied 

tools. Most of these techniques were originally 

developed to handle weakly nonlinear dynamical 
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systems in the presence of small parameters. 

According to these techniques, the solutions are 

expanded analytically into a power series of small 

parameters. The coefficients of the series of several 

harmonics are attained as a group of nonlinear linear 

algebraic equations. Moreover, many nonlinear 

differential systems arise in science and engineering 

without perturbation parameters. There exists little 

accuracy to the results attained by the perturbation 

techniques. 

To overcome these limitations, several 

approximation methods are established to handle 

strongly nonlinear oscillatory systems, including the 

modified Lindstedt-Poincare method (Cheung et al., 

1991; Liu, 2005; Nayfeh, 1981), harmonic balance 

method (Alam et al., 2016; Lim and Lai, 2006; 

Mickens, 1986; Rahman et al., 2010), residual 

harmonic balance method (Guo and Ma, 2014) and 

residual mass harmonic balance method (Ju, and 

Xue, 2015), iterative harmonic balance method 

(Guo and Leung, 2010), amplitude and frequency 

formulation (EI-Naggar and Ismail, 2012) and 

symmetry analysis method (Khan and Mirzabeigy, 

2014), Homotopy perturbation method (He, 1998, 

1999, 2006; Uddin et al., 2011, 2012). Furthermore, 

the energy balancing technique is applied to solve 

strongly nonlinear differential systems (Molla et al., 

2018, Mehdipour et al., 2010; Babazadeh et al., 

2008, Molla et al., 2017; Molla and Alam, 2017). A 

clear analysis of some newly exhibited approximate 

techniques can be attained in (Alam et al., 2007; Liu 

et al., 2007; Shen et al., 2014, Zhang and Gu, 2010; 

Barro, 2016; Casaleiroa et al., 2014; Mondal et al., 

2019). Rahman et al. (2010) applied the harmonic 

balance method for solving Van der Pol oscillator 

without external force.  

Mondal et al. (2019) developed a new analytical 

method for handling the Van der Pol oscillator based on 

the harmonic balance method. Khan (2019) presented 

an analytical technique to solve Van der Pol equation 

by using the homotopy perturbation method. Yeasmin 

et al. (2020) have introduced a technique for handing 

free vibration quadratic nonlinear dynamical systems 

based on the harmonic balance method. However, 

these methods have not been greatly improved to 

attain approximate solutions. Any given method is 

not appropriate for all nonlinear dynamical 

systems. The individual methods are suitable for 

particular nonlinear problems. Some procedures 

are long and difficult to handle the systems.    

Also, the derivations and calculations of these 

procedures are very tedious work. Recently, Ullah 

et al. (2021) have developed a modified harmonic 

balance method for handling damped forced 

Duffing oscillators in the presence of cubic and 

quadratic nonlinearities. 

In this article, a modified harmonic balance 

approach is developed to handle the forced Van 

der Pol equation. The benefit of the mentioned 

technique is that a group of algebraic linear 

equations is handled by using a nonlinear one.    

As a result, it requires less computational attempt   

and time than the other existing harmonic        

balance methods.  

The Method 

Consider a strongly nonlinear dynamical system 

(Mondal et al., 2019, Khan, 2019, Liu et al., 2007, 

Shen et al., 2014)  with  a  periodic  forcing  term  in 

 the form 

�̈� + 𝜔0
2𝑦 − 𝜖𝑔(𝑦, �̇�) = 𝑃𝑠𝑖𝑛(𝜔𝑡)     (1) 

where y(𝑡) is the deformation or displacement of the 

system, dots represent derivative w. r. to 𝑡, 𝜔0 is the 

natural frequency, 𝑔(𝑦, �̇�)  is a certain nonlinear 

function of 𝑦 and �̇�,  ∈ is a positive parameter which 

is not necessarily small and denotes the strength      

of the damping in Van der Pol equation, 𝑃  is the 

amplitude of the exciting force and 𝜔 is the forcing 

frequency.  

The trial solution of Eq. (1) is assumed as (Ullah 

 et al., 2021) 

𝑦 = α cos(𝜔𝑡) + 𝛽 𝑠𝑖𝑛(𝜔𝑡) + 𝛾 cos(3𝜔𝑡) +

𝛿 sin(3𝜔𝑡) + ⋯                                                       (2) 

where α, 𝛽, 𝛾  and 𝛿  are unknown constants of the 

truncated Fourier series. Inserting this trial solution 
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in Eq. (1) and spreading 𝑔(𝑦, �̇�)  using truncated 

Fourier series and equating the coefficients of like 

harmonics, the following system of nonlinear 

algebraic equations are attained 

𝛽(−𝜔2 + 𝜔0
2) + 𝛼 ∈ 𝜔+∈ 𝑆1(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) = 𝑃    (3) 

𝛼(−𝜔2 + 𝜔0
2) − 𝛽 ∈ 𝜔+∈ 𝐶1(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) = 0    (4) 

𝛿(−9𝜔2 + 𝜔0
2) + 3𝛾 ∈ 𝜔+∈ 𝑆3(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) = 0        (5) 

𝛾(−9𝜔2 + 𝜔0
2) − 3𝛿 ∈ 𝜔+∈ 𝐶3(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) = 0     (6) 

Now omitting 𝜔2 from the Eqs. (4)- (6) by using Eq. 

(3), and deleting the terms whose response are small, 

then we get 

𝜔2 = 𝜔0
2+∈ 𝑆1(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) − 𝑃/𝛽                   (7) 

−𝛽 ∈ 𝜔+∈ 𝐶1(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) + 𝛼 ∈

𝑆1(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) + 𝑃𝛼/𝛽 = 0                        (8) 

−8𝜔0
2𝛿 + 𝛿 ∈ 𝑆1(𝛼, 𝛽, 𝛾, 𝛿, ⋯ )+∈

𝑆3(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) + 3𝛾 ∈ 𝜔 + 9𝑃𝛿/𝛽 = 0          (9) 

−8𝜔0
2𝛾 + 𝛾 ∈ 𝑆1(𝛼, 𝛽, 𝛾, 𝛿, ⋯ )+∈

𝐶3(𝛼, 𝛽, 𝛾, 𝛿, ⋯ ) − 3𝛿 ∈ 𝜔 + 9𝛾𝑃/𝛽 = 0        (10) 

Now eliminating 𝜔  from the Eqs. (9) and (10) by 

using Eq. (8), and taking 𝑂(1) of 𝛾, 𝛿 and removing 

the expressions with small effect on the systems. As 

a result system of equations in 𝛾 , 𝛿  are attained. 

Simplifying these two equations,  𝛾, 𝛿 are expressed 

in terms of  𝛼, 𝛽. Finally, putting 𝛾, 𝛿 into Eq. (8) and 

𝛼 is expanding in a  power series small parameter 

𝜉(∈, 𝜔, 𝑝)  

𝛼 = 𝜇0 + 𝜇1𝜉 + 𝜇2𝜉2 + 𝜇3𝜉3 + ⋯        (11) 

where  𝜇0 , 𝜇1,  𝜇2 , …  are function of 𝛽 . Finally, 

substituting 𝛾, 𝛿, and 𝛼 into Eq. (3) and calculating, 

𝛽 is attained. Consequently, the values of 𝛼, 𝛾, and 𝛿 

are obtained. 

Example 

Consider the following forced Van der Pol equation 

(Mondal et al., 2019, Khan 2019, Liu et al., 2007, 

Shen et al., 2014)  

�̈� + 𝑦−∈  (1 − 𝑦2)�̇� = 𝑃𝑠𝑖𝑛(𝜔𝑡)                      (12) 

where 𝑔(𝑦, �̇�) = (1 − 𝑦2)�̇� . According to the 

truncated Fourier series, the guess solution of Eq. (1) 

is given by (Ullah et al., 2021)  

𝑦 = α cos(𝜔𝑡) + 𝛽 𝑠𝑖𝑛(𝜔𝑡) + 𝛾 cos(3𝜔𝑡) +

𝛿 sin (3𝜔𝑡) (13) 

Inserting Eq. (13) in Eq. (12) and taking the 

coefficients of similar harmonics terms and removing 

the parts which play a small effect on the system, 

then the following algebraic equations are generated:  

𝛽(1 − 𝜔2) + 𝛼 ∈ 𝜔 +
1

4
𝛼𝜖𝜔(−𝛼2 − 𝛽2 − 𝛼𝛾 +

𝛽2𝛾

𝛼
− 2𝛾2 − 2𝛽𝛿 − 2𝛿2) = P       (14)  

(1 − 𝜔2) − 𝛽𝜖𝜔 +
1

4
𝛽𝜖𝜔 (𝛼2 + 𝛽2 − 𝛽𝛿 +

𝛼2𝛿

𝛽
+

2𝛾2 − 2𝛼𝛾 + 2𝛿2) = 0                                     (15) 

𝛿(1 − 9𝜔2) + 3𝛾𝜖𝜔 −
3

4
𝛾𝜖𝜔 (𝛾2 + 𝛿2 + 2𝛼2 +

2𝛽2 +
𝛼3

3𝛾
−

𝛼𝛽2

𝛾
) = 0 

                      (16) 

𝛾(1 − 9𝜔2) − 3𝛿 ∈ 𝜔 +
3𝛿∈𝜔

4
(γ2 + δ2 + 2β2 +

2α2 +
α2β

δ
−

β3

3δ
) = 0  (17) 

Terminating 𝜔2 from Eqs. (15)- (17) by using Eq. 

(14), and deleting the terms whose responses are 

small, we get  

4𝑃𝛼 + (𝛼4 + 𝛼3𝛾 − 3𝛼𝛽2𝛾 + 𝛽2(−4 + 𝛽2 − 𝛽𝛿) +

𝛼2(−4 + 2𝛽2 + 3𝛽𝛿))𝜖𝜔 = 0         (18) 

36𝑃𝛿 + 𝜖𝜔(3𝛽3(𝛼 − 2𝛾) + 9𝛼(−4 + 𝛼2)𝛿 + 9𝛼𝛽2𝛿) −

𝛽(32𝛿 + (𝛼3 − 12𝛾 + 6𝛼2𝛾)𝜖𝜔) = 0                             (19) 

36𝑃𝛾 + 𝜖𝜔(6𝛽3𝛿 − 𝛽4 + 9𝛼(−4 + 𝛼2)𝛾 3𝛼𝛽2(𝛼 +

3𝛾)) − 2𝛽(16𝛾 − 3(−2 + 𝛼2)𝛿𝜖𝜔) = 0         (20) 

Now using Eq. (18), terminating 𝜔 from Eqs. (19) 

and (20) and taking linear terms of 𝛾, 𝛿 only and then 

excepting the terms whose responses are small, we 

attained 4𝛽 (−8(𝛼4 + 𝛽2(−4 + 𝛽2) +

2𝛼2(−2 + 𝛽2))𝛿 + 𝑃(𝛼4 − 3𝛼2𝛽(𝛽 − 3𝛿) +

9𝛽(−4 + 𝛽2)𝛿)) = 0   (21) 
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−4𝛽 (8(𝛼4 + 𝛽2(−4 + 𝛽2) + 2𝛼2(−2 + 𝛽2))𝛾 −

𝑃𝛽(−3𝛼3 + 𝛼𝛽2 + 9𝛼2𝛾 + 9(−4 + 𝛽2)𝛾)) = 0    (22) 

Solving Eq. (10a) and Eq. (10b), 𝛾  and 𝛿  are 

calculated as: 

𝛾 =
Pα𝛽(−3𝛼2+𝛽2)

(−4+𝛼2+𝛽2)(8𝛼2−9𝑃𝛽+8𝛽2)
,  

𝛿 =
𝑃𝛼2(𝛼2−3𝛽2)

(−4+𝛼2+𝛽2)(8𝛼2−9𝑃𝛽+8𝛽2)
  (23)  

Puting 𝛾  and 𝛿  into Eq. (18), then expanding 𝛼  in 

power series of the small parameter 𝜉, we get  

𝛼 = 𝜇0 + 𝜇1𝜉 + 𝜇2𝜉2 + 𝜇3𝜉3  (24) 

where 𝜉 =
𝜖𝜔

𝑃
 , 𝜇0 =

𝛽2𝜖𝜔

𝑃
 , 𝜇1 =

𝛽4𝜖2𝜔2

𝑃2 ,               

𝜇2 =
2𝛽6𝜖3𝜔3

𝑃3  , 𝜇3 =
5𝛽8𝜖4𝜔4

𝑃4                       (25) 

Finally, after substituting the values of 𝛿 and 𝛼 into Eq. 

(14), the values of 𝛽  are computed. Consequently the 

values  of  𝛼, 𝛾 and 𝛿 are obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results and Discussion 

In this study, a new modified analytical approach has 

been exhibited for obtaining the periodic solution of the 

forced Van der Pol oscillator. The solutions determined 

by the present technique are compared with the 

corresponding numerical (considered to be exact) 

solutions to justify the validity and accuracy of the 

proposed technique. The solutions curves attained by 

the present method and a numerical method are shown 

graphically in Figs. 1(a)-1(g) for the forced Van der Pol 

equation in presence of several damping and various 

values of the system parameters. Also, the phase planes 

are drawn for various values of the system parameters 

in Figs. 2(a)-2(d). Geometric representation is vital to 

visualize the system’s behavior of the physical systems. 

From these figures, it is noticed that the obtained results 

agree nicely with those results determined by the 

numerical method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1(a). Comparison between the time versus solution of Eq. (12) is attained by the presented technique 

(represented by dots) and numerical technique when 𝝎 = 𝟑, 𝝐 = 𝟎. 𝟏, 𝑷 = 𝟏𝟎. 
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Fig. 1(b). Comparison between the time versus solution of Eq. (12) is attained by the presented 

technique (represented by dots) and numerical technique when 𝝎 = 𝟑, 𝝐 = 𝟎. 𝟏, 𝑷 = 𝟐𝟎. 

 

Fig. 1(c). Comparison between the time versus solution of Eq. (12) is attained by the presented 

technique (represented by dots) and numerical technique when 𝝎 = 𝟑, 𝝐 = 𝟎. 𝟏, 𝑷 = 𝟏𝟐. 

 

Fig. 1(d). Comparison between the time versus solution of Eq. (12) is attained by the presented 

technique (represented by dots) and numerical technique when 𝝎 = 𝟓, 𝝐 = 𝟎. 𝟏, 𝑷 = 𝟏𝟎. 
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Fig. 1(e). Comparison between the time versus solution of Eq. (6) is attained by the presented technique 

(represented by dots) and numerical technique when 𝝎 = 𝟏𝟐, 𝝐 = 𝟎. 𝟓, 𝑷 = 𝟏𝟐. 

 

Fig. 1(g). Comparison between the time versus solution of Eq. (12) is attained by the presented 

technique (represented by dots) and numerical technique when 𝝎 = 𝟏𝟎, 𝝐 = 𝟎. 𝟓, 𝑷 = 𝟐𝟎. 

 

Fig. 1(f). Comparison between the time versus solution of Eq. (12) is attained by the presented 

technique (represented by dots) and numerical technique when 𝝎 = 𝟏𝟎, 𝝐 = 𝟏, 𝑷 = 𝟏𝟎. 
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Fig. 2(a). Comparison of analytical and numerical solutions in the phase plane for 𝝎 = 𝟑, 𝝐 = 𝟎. 𝟏, 𝑷 = 𝟏𝟎. 

 

Fig. 2(c). Comparison of analytical and numerical solutions in the phase plane for 𝝎 = 𝟓, 𝝐 = 𝟎. 𝟏, 𝑷 = 𝟏𝟐 

Fig. 2(b). Comparison of analytical and numerical solutions in the phase plane for𝝎 = 𝟓, 𝝐 = 𝟎. 𝟏, 𝑷 = 𝟏𝟎. 
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Conclusion 

A modified harmonic balance method is developed 

and justified in this study to handle forced Van der 

Pol equation. The significant convenience in our 

technique is that a system of linear algebraic 

equations is tackled by using a nonlinear one. As a 

result, the computational attempt is reduced for 

handling a group of nonlinear algebraic equations. 

But it needs an enormous computational effort to 

handle a set nonlinear algebraic equation in the 

classical harmonic balance method. The graphic 

representations show good agreement between 

approximate and numerical solutions. The 

comparison indicates the accuracy and the 

exactness of the present technique in solving the 

forced Van der Pol equation. The study results 

exhibit adequate understanding with those 

solutions computed by the fourth-order Runge-

Kutta method for several significant damping and 

several values of the system parameters. Thus,   

the present approach may consider a suitable 

technique for handling the forced Van der Pol 

equation in vibration engineering. 
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