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ABSTRACT 

A problem on the plane inviscid and irrotational fluid motion due to the presence of a line 
source and sink in the region between two fixed co-axial circular cylinders is considered in terms of 
the stream function. It has been shown that the solution of the problem is not possible in the light of 
the Eulerian theory of inviscid fluid motion.   
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INTRODUCTION 

In the paper (Sen and Ahammad 2009), it has been solved the problem of the two 
dimensional slow viscous fluid motion induced by a line source and sink of equal 
strength in the region between two co-axial fixed circular cylinders. Ranger (1961) has 
considered the problems of the viscous and non-viscous fluid flows between the same 
cylinders, when a line source and sink are positioned on the outer boundary, and 
determined the stream functions for the flow pattern between the cylinders and the force 
exerted by the fluid on the inner cylinder, in infinite series. A study in detail for the 
viscous fluid motions with cylinders and singularities is yet to be made. When the 
hydrodynamical singularities in a non-viscous fluid with no rigid boundaries are known 
in terms of the complex potential, the stream function for the flow pattern due to their 
presence outside a single circular cylinder is usually found by applying the Milne-
Thomson circle theorem (Milne 1940, Milne 1972) or the method of the potential theory 
(Lamb 1932) for the same singularities outside the cylinder. The stream function for the 
flow pattern inside a single circular cylinder is derived by using Chorlton’s extension 
(Chorlton  1967) of Milne–Thomson’s circle theorem or Sen’s circle theorem for interior 
flow (Sen 1963) for the same singularities inside the cylinder. Here it is noteworthy that 
the above circle theorems do not apply in general for the determination of the stream 
function for the flow system due to a number of hydrodynamical singularities within a 
circular cylinder in the presence of one or more rigid boundaries in an inviscid 
irrotational fluid motion within the same cylinder. In an attempt towards our aim to 
obtain, in future, solutions of the problems of non-viscous fluid flow due to the 
singularities in the assemblage of a number of boundaries within a circular cylinder, here 
we first present an analytical method of solving the problem of a two-dimensional 
irrotational non-viscous fluid flow due to a line source and sink in the region between 
two con-centric circular boundaries. 
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The inviscid fluid flow within a circular cylinder 

At the outset we need to determine the flow due to the combination of a source of 
strength m at the point ),( 1 αaA and a sink of the same strength at the point ),( 1 α−aB , 
where a1< a,  a  being the radius of the circular cylinder referred below. The basic stream 
function due to these singularities (Milne 1940) in the absence of rigid boundaries is 
given by  
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We may expand the stream function (2.1) as 
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Here we observe that 0ψ (r, θ ) ∼ O ( )r/1  for large r. Thus the circle theorem I for 
the interior potential flow in Sen (Chorlton 1967) applies here. If the cylinder ar =  is 
introduced into the flow field of the singularities, the stream function for the flow interior 
to the cylinder is given by the formula, 
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Then substituting the basic stream function (2.1) in (2.4) yields the necessary stream 
function for the flow interior to the circle ar = and this is,  
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It is here important to note that the last two terms of the stream function (2.5) 
constitute singularities which are outside the boundary ar = . 

Now to use this stream function in the next section we present it in an appropriate 
infinite series form as  
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Non-existence of the inviscid fluid motion between two co-axial circular cylinders   

                                       

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Sketch for the inviscid fluid bed between two co-axial circular cylinders with the singularities. 

Now we are interested in introducing a cross-section of a circular cylinder with 
radius b (< a) into the flow and is fixed in a co-axial position with respect to the outer 
cylinder. As a result of this situation, the Earnshaw stream function for a new flow field 
in the region common to the cylinders becomes, say 

21 ψψψ += ,                                       (3.1) 

where 2ψ is also a suitable general solution of  Laplace’s equation   
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and it is given by   
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 An and Bn  being relevant  real constants to be determined. 

The stream function 1ψ  referred to in (3.1) satisfies the condition of the flow 
interior to the outer boundary ar = . 

Hence it is sufficient that the stream function 2ψ  must also satisfy the following 
condition on ar = ; that is, 

              on ar = , 02 =ψ .                                                               (3.5) 

Again, on the inner boundary, the stream functionψ , represented by equation (3.1) 
must satisfy the following boundary condition, 

on br = ,  0=ψ .                                                                                              (3.6) 

Now using the boundary condition (3.5) we have,  
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In order to use the boundary condition (3.6), we express the stream function (3.1) in 
the following form, by incorporating the stream functions (2.8) and (3.3). 
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Now the boundary condition (3.6) yields, the result 
                 0)()( =+ bgbh nn ; n=1, 2, 3 , …   .                                                       (3.9)  

 From equations (3.7) and (3.9), we get  
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Now the stream function (3.8) on simplification, takes the simple form     
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Therefore  0),( =θψ r                                                                                       (3.14) 

Which satisfies that the fluid motion between the cylinders does not exist. 
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