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ABSTRACT 

Asymptotic solutions for stationary and non-stationary modes for the upper and lower branch 
disturbances assuming large scale magnetic fields are investigated. A triple deck structure which 
governs the lower branch modes for a large scale magnetic field is displayed. The wavenumbers 
and waveangle calculated from the eigenrelations α ≈ 2.62m5/4r-1/2,  β ≈  0.78 m1/4 r1/2,  φ = 0.298m-

1r, to be consistent with the numerical results for large scale magnetic fields. 
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INTRODUCTION 

Studies have been carried out to analyze the phenomenon of instability of a three 
dimensional boundary layer flow of an incompressible fluid on an infinite rotating disk. It 
is the need to comprehend the instability of the boundary layer on a swept wing that has 
inspired most of these investigations. The design of laminar flow control has promise of 
significant improvement in airplane fuel efficiency. Malik (1986) in a parallel flow 
approximation computed the value of φ = 11°corresponding to the critical Reynolds 
number. Hall (1986) discussed the high Reynolds number asymptotic structure of the 
viscous mode of Malik (1986) and pointed out that this lower branch mode was 
controlled by a triple-deck structure fixed by a balance between viscous and Coriolis 
forces. Following the procedure developed by Hall (1986), and taking into account 
nonlinear effects, Mackerrell (1987) extended Hall's asymptotic structure to derive an 
amplitude equation governing the growth of disturbances near the neutral location. It was 
shown that with nonlinearity, the instability was subcritical. 

 Hall (1986) has given asymptotic analysis of the upper branch stationary modes, i.e.  
zero-frequency waves. Turkyilmazoglu and Gajjar (1998) (hereafter referred to as TG) 
extended Hall's work to consider non-zero frequency waves for the upper branch 
instability modes. An eigenrelation involving the correction terms for the wavenumber 
and waveangle was derived. The wavenumbers for different frequencies so computed 
agree well with the numerical results. In this paper, we have extended investigations by 
Hall (1986) and TG for zero frequency and for non-zero frequency, respectively, by 
imposing on the flow a magnetic field normal to the rotating disk. Jasmine and Gajjar 
(2005) have given numerical solution of the absolute and convective instability in the 
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incompressible boundary layer on a rotating disk in the presence of a uniform magnetic 
field. We have derived asymptotic solutions assuming large magnetic fields. 

This paper is organized as follows. The equations governing the flow of an infinite 
disk rotating in an incompressible fluid with an imposed external magnetic field normal 
to the disk are formulated in section 2. An asymptotic structure of the upper branch mode 
when the magnetic field is large is developed in Section 3. A triple-deck structure which 
governs the lower branch modes for large scale magnetic fields is given in Section 4.  
The conclusions are set in Section 5. 
 
Mathematical formulation 

 Consider the three dimensional boundary layer flow of an incompressible, 
electrically conducting viscous fluid on an infinite disk which rotates about its axis with a 
constant angular velocity Ω. A uniform magnetic field B = B0 k is applied to the system, 
where k is a unit vector parallel to the z-axis. If the magnetic Reynolds number is small 
(Rm << 1), then within the viscous boundary layer, the electric and magnetic fields,  E and 
B, will not be significantly different from their values at the disk surface. This is linked to 
the idea that the viscous boundary layer is usually much thinner than the magnetic 
boundary layer. Then, the current density J = (σB0v, σB0u, 0). In order to non-
dimensionalize the Navier-Stokes equations, we introduce non-dimensional quantities r*, 
θ*, z*, t*, u*, v*, w*, B*, and P* :  r =Lr*, z =Lz*, θ  = θ*, t = t* L/Uc, P = ρU2

c P*
,  u = Ucu*, v 

= Ucv*, w = Ucw*, B* = B0B, where L is a given length scale and Uc = LΩ  is a given 
velocity scale. For convenience of writing, we shall suppress the * over the non-
dimensional variables. The full time-dependent, unsteady Navier-Stokes equations 
governing the viscous fluid flow are the usual momentum and the continuity equations 
given as follows: 

rv
r

v
z
u

w
u

r
v

r
u

u
t
u

−−−
∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
2

2

θ
        

,
2
0

22
22

2
1

u
B

r

uv

r
u

Rr
P

Ω
−−

∂

∂
−∇+

∂

∂
−= ⎥

⎦

⎤
⎢
⎣

⎡
ρ

σ

θ
  (1)                                    

u
r

uv
z
vwv

r
v

r
vu

t
v 2++

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

θ
   

),1(211 2
0

22
2

2 +
Ω

−⎥⎦
⎤

⎢⎣
⎡ −

∂
∂

+∇+
∂
∂

−= v
B

r
vu

r
v

R
P

r ρ
σ

θθ
  (2) 

[ ]w
Rz

P
z
www

r
v

r
wu

t
w 2

2

1
∇+

∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

θ
,                         (3) 



AN ASYMPTOTIC INVESTIGATION OF THE NON-STATIONARY 51 

51 

01
=+

∂
∂

+
∂
∂

+
∂
∂

r
u

z
wv

rr
u

θ
,                                                                     (4) 

where the velocity field with radial, tangential and vertical components are as  u, v, and 
w,  respectively. P is the pressure. The quantities ρ, ν, μ, and  σ  which represent mass  
density, kinematic viscosity, magnetic permeability, and electrical conductivity of the 
fluid, respectively, are all assumed to be constant throughout the flow field. Here, we 
have a global Reynolds number Re = UcL/ν = R2, where R is the Reynolds number based 
on the displacement thickness δ = (ν /Ω)1/2. The Laplacian operator in cylindrical 
coordinates is  
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Throughout this analysis, the fluid is assumed to lie in the semi-infinite space z ≥ 0. 

The basic velocity field (uB, vB, wB, pB) = [rF(Z), rG(Z), 1/R H(Z), 1/R2 P(Z)]. The 
basic magnetic field (Brb, Bθb, Bzb) = [0, 0, B0]. The boundary layer coordinate Z, which is 
of order O(1),  is defined as Z = zR. 

The self-similar equations take the form 

F2 – (G+1)2 + F′H – F″ + mF = 0,                                                  (5) 

2F(G+1) + G′H – G″ + m(G+1) = 0,                                                 (6) 

 P′ + H'H – H″ = 0,                                                                                    (7) 

2F + H′ = 0,                                                                                          (8) 

where m = σ B2
0 / ρΩ is the magnetic interaction parameter assumed to be a  constant. 

Here, primes denote derivatives with respect to Z. The appropriate boundary conditions 
are F = G = H = 0 at Z = 0, F = 0, G = –1, H = h∝ as Z→ ∝                   (9) 

The value of h∝ is a constant vertical velocity of the rotating fluid in the far-field 
above the disk. For large m, the equations (5 - 8) can be solved analytically. We expand 
the basic velocity components as 

,, LLL  )z(H m  H)z(G G , )z(Fm  F 0
-3/2

00
-1 +=+=+=   10) 

where z  = m1/2 Z. Substituing the above expansions into the equations (5 - 8) and  
equating terms of order one, we obtain  

(G0 + 1) – G″0 = 0, F0 – (G0 + 1)2 – F″
0 = 0, 2F0 + H′0 = 0. 

The solution of this system is 

3/1)2/1(2/3),1(),1/3( −+=−=−= z-2z-
0

z-
0

z-2z-
0 e   e  H e  Gee  F              (11) 
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Substituting for F0, G0, and H0 into equation (10) yields 
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We must solve equations (1 - 4) subject to the no-slip condition at the wall, whereas 
sufficiently far away from the wall we insist that the disturbances decays to zero. We are 
going to consider the lower-branch disturbances, which have a triple-deck structure for R 
>> 1. 
 
The Inviscid Zone 

Following   Hall (1986), we consider zero frequency inviscid modes. We assume that 
the disturbances for the upper branch take the form 

cti)}()dr(r,){i(
eep(z)]    w(z),v(z), u(z), [ P]  W, V, U, [ 

r

23 ε
εθβεα

ε
−+∫=               (15) 

where ε = R-1/6. The scaling chosen for the frequency is consistent with the asymptotic 
analysis of Bassom and Gajjar (1988). We shall also consider only neutral disturbances at 
the position r. On the upper branch, we expand the wavenumbers and frequency as (α, β, 
c) = (α0, β0, c0) + ε (α1, β1, c1) +…, assuming the existence of an inviscid zone depth  O(ε-

3) as elucidated by Hall (1986).  To satisfy the no-slip condition on the velocity at the 
disk wall, a viscous layer must exist. 

In this region we expand u, v, w, and p in the form u  = u0(ς) + ε u1(ς) +…, v  = v0(ς) 
+ ε v1(ς) +…, w  =  w0(ς) + ε w1(ς) +…, p  = p0(ς) + εp1(ς) + …, where ς  = m1/2ε-3 z. Here 
m = σB2

0 /ρΩ denotes the magnetic field parameter which is initially taken to be of O(1), 
so that the above expansions in power of ε  hold. Later we consider the limit m large 
for zeroth order problem. The above expansions  are  then  substituted into linearized N-S  

equations (1 - 4) with 
r∂
∂  replaced by 

r∂
∂ + (i/ε3) {α0 + εα1+…} and with 

θ∂
∂    replaced by 

(i/ε3) {β0 + ε β1+ …}.  Equating terms of order ε-3, we obtain  

iUB u0 + m1/2r  w0 F′= – iα0 p0,    iUB v0 + m1/2r  w0 G′ = – 0
0 p

r
iβ

                           (16) 

iUBw0 = – m1/2  0P′ ,  iα0u0 + (iβ0 /r)v0 + m1/2 w′0 = 0,                                           (17) 

UB = α0 rF + β0 G.                                                                                                   (18) 

If u0, v0 and the pressure p0 from the above equations are eliminated, we find that w0 
satisfies UB ( 0G ′′  – 2γ  w0) – BU ′′  w0 = 0.                                 (19) 
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Here, 2
0

12 γγ −= m  , where 2
0

2
0

2
0 βαγ += /r2 is the effective wavenumber and UB = 

α0rF + β0 G is the effective velocity profile. Primes denote derivative with respect to ς. 
The boundary conditions are w0 = 0 at ς = 0, ∞. For large m, F = m-1[1/3(e-ς – e-2ς)] + … 
and G = (e-ς – 1) + … Equation (18) yields UB ≈ α0rm-1F0 + β0 G0, BU ′′ ≈ α0rm-1

0F ′′ + β0 

0G ′′ , where F0 = 1/3(e-ς – e-2ς)] and G0 = (e-ς – 1). For stationary modes of Rayleigh 
equation (19), the solution is restricted such that UB and BU ′′  vanish at the same non-zero 
value of ςς = . This eigenvalue problem for the non-magnetic case was solved by Hall 
[2]. For the magnetic case, from the condition UB = 0 and U''B = 0 at  ςς =  , we obtain, 
for large m 
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1
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Here, γ  is O(1) constant, as follows from the solution of (19). The predictions (20) 
are tested against the full numerical solution given by Jasmine and Gajjar [5] for large m 
at a fixed Reynolds number. Fig. 1b shows that the results are consistent with those in 
equation (20). 
 
The wall modes  

Hall (1986) has shown that lower branch disturbances having a triple-deck structure 
of the type discussed by Smith (1979) for Blasius flow can also exist. In this section, we  
will extend  his formulation in the presence  of a  large magnetic field strength M. Firstly, 
we define the appropriate triple-deck structure based on the small parameter ε = R1/16 
where  the thicknesses of the lower, main, and upper deck are ε9, ε8, and  ε4, repectively. 
The disturbances structure in the main and upper decks is essentially the same for the 
lower branch as determined by Smith (1979). On the lower branch, we assume that the 
disturbance structure takes the form 

∫ +
=

r
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On the lower branch, we also expand the wavenumbers (α, β) = (α0, β0,) + ε2 (α1, β1) + … 
Here, we have anticipated that the order ε terms are zero, and we again seek αi,  βi (i=  0, 
1, 2, …), such that the flow is neutrally stable at the location r. We define ξ, ζ and Z  by  
ξ = zε-9, ζ = zε-8, Z = zε-4. 
 
The upper deck 

In the upper deck F = 0, G = –1 and Z = zε-4.  The  perturbation quantities then  take 
the form (U, V, W, P) = ε3( U0(Z), V0(Z), W0(Z), P0(Z))+ ε4(U1(Z), V1(Z), W1(Z), P1(Z))+ 
... . Substitution in the Navier-Stokes equations (1 - 4), the zero-order equations imply 

β0U0 = α0P0, β0V0 = β0P0/r, 
zd

dPWi 0
00 =β ,    0/ 0

0000 =++
zd
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When z → ∝ , the solution of this system that decays to zero is 

U0 = (α0 / β0)C e-γ
°
z,  V0 = (C/r) e-γ

°
z
,      W0 = (iγ0 / β0)C e-γ

°
z
,    P0 = C e-γ

°
z
,    (22) 

where γ0
2 = (α2

0+ β2
0 / r2) and C is an unknown function of r. 

 
The main deck 

In the main deck, we define ζ = zε-4.  The disturbance then expands as U = (1/ε)u0(ζ) 
+ u1(ζ) + …, V = (1/ε)v0(ζ) + v1(ζ) + …, W= ε3w0(ζ) + ε4w1(ζ) + …, P =  ε3 C + ε4P1(ζ) + 
…,  where we have anticipated that P is independent of ζ to the  order ε3 and therefore 
equal to C. Substituting into equations (1 - 4), we find that u0, v0, w0 satisfy iα0rFu0 + 
iβ0Gu0 + rF'w0 = 0,  

iα0r F v0 + iβ0G v0 + rG' w0 = 0,  
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where F = m–1 [1/3(e–ζ – e–2ζ)] + ... and G = (e–ζ – 1) + ... are mean velocity profiles. 
Primes denote derivative with respect to ζ. Solution of this system that matches with the 
upper deck solution is 

u0 = Cr γ0 F' / β2
0, v0 = Cr γ0 G' / β2

0, w0 = – (iC γ0 / β0)(α0 r F + β0 G), (23) 

where F and G are mean velocity profiles. We note from (23) that w0 in fact satisfies the 
no-slip condition when ζ→ 0; however, unless F' and G' both vanish at ζ = 0, the other 
velocity components are non-zero there. If we choose α0 and β0 such that 

,  G'
r

F' ( 0
0 0(0))(0) =+

βα  (24)  

which gives for large m, 
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00
βα  when ζ→ 0 . 

 
The lower deck 

In the lower deck, we expand F, G for small ζ and write ξ = ζ/ε, we have 

F =  ε F0 ξ + ε2 F1ξ2 + ε3 F2 ξ3 + …, G =  ε G0 ξ + ε2 G1ξ2 + ε3 G2 ξ3 + ……,        (25) 

where Fj-1 = Fj/j!,  Gj-1 = Gj/j! ; for j = 1, 2,…To match with the solution (23), written in 
terms of ξ, and  using (25), we  expand  therefore  the lower-deck disturbances in the 
form 
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We must now substitute the above expansions into the disturbance equations and 
solve for (U-1, V-1), (U0, V0),  (U1, V1, W1, P1) etc. From the continuity equation, we obtain 
immediately that 
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The radial momentum equation then yields 
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which must be solved subject to U-1 = – r γ0 C F0 / β2
0  , U0 =  0  , ξ  = 0, U-1,  U0 → 0, ξ 

→∝. The function U-1 is given by
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order approximation to the radial and azimuthal momentum equations gives 

[ ]

12

2

10

11
2

01012
0

111
2

1010 222)(

−

−

−+−=

−++++

mU
d

UdP

VFGFrCrWFrUGFri 0

ξ
α

ξβα
β
γξξβα

     (29)              

[ ]

.

222)(

12

2

1
0

11
2

01012
0

111
2

1010

−

−

−+−=

+++++

mV
d

UdP
r

UGGFrCrWGrVGFri 0

ξ
β

ξβα
β
γξξβα

    (30) 

If we multiply these equations by iα0 and iβ0/r, respectively and add them, we obtain 
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The z-momentum and continuity equations furnish 
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We can eliminate U1, V1 from equations (31), (32) and (33) to get 
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where A = (rα0 F1 + β0 G1), B = )( 01012
0

0 GFrC βα
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+ , S = ξ2/1Δ . We write the solution 

of equation (34) in the form 
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where K is a constant and Q1 and Q2 satisfy Q''1 – S2 Q'1 + 2S Q1 = 1,   Q1(0) = Q1(∝) = 0, 
Q''2 – S2 Q'2 + 2S Q2 =  U(0,21/2 S),  Q2(0) = Q2(∝) = 0. In fact, it is possible to express 
Q1, Q2 in terms of integrals involving parabolic cylinder functions. It remains for us to 
satisfy U1= V1 = 0 at ξ = 0. With equations (32), (33) and (35) as in Hall (1986), this 
condition leads to the eigenrelation: 
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  (a) (b) 

Fig. 1.  Magnetic field m versus (a) αm–1/2 and (b) βm1/2 for fixed Reynolds number R = 1000. The 
long curves show numerical results and doted lines show asymptotic ones. 
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To separate real and imaginary parts, we express equation (36) in the form 
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Equating real and imaginary parts, we obtain 
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The integrals I3, I4 are given by 
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The predictions (40) and (41) are tested against the full numerical solution given by   
Jasmine and Gajjar (2005) for large m at a fixed Reynolds number. Fig. 2 shows that the 
results are consistent with equations (40) and (41). 

   (a) (b) 
Fig. 2. Magnetic field m versus (a) γ0m–5/4, and (b) φm for fixed Reynolds number R = 1000. The long 

curves show numerical results and doted lines show asymptotic ones. 
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CONCLUSIONS  

Asymptotic solutions for the upper branch neutral stability of the  three dimensional 
disturbances imposed on Von-Ka/rma/n’s boundary layer assuming large scale magnetic 
fields for non-zero frequency waves have been investigated. The asymptotic analysis of 
TG for non-zero frequency waves for the upper branch instability modes has been 
extended by imposing on the flow a magnetic field normal to the rotating disk. We have 
also extended investigations by Hall (1986) for stationary modes for the lower branch 
disturbances assuming large scale magnetic fields. A triple deck structure which governs 
the lower branch modes for a large scale magnetic field is displayed. Asympotic solution 
against the full numerical solution of the Navier-Stokes equations for large m at a fixed 
Reynolds number has been tested. The behaviour of the wavenumbers and waveangle 
calculated from the eigenrelations is found to be consistent with the numerical results for 
large scale magnetic fields. 
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